Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dia fic
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2020 lúc 17:20

\(A\ge\dfrac{\left(x+y\right)^2}{2xy}+\dfrac{\sqrt{xy}}{x+y}\)

\(A\ge\dfrac{7\left(x+y\right)^2}{16xy}+\dfrac{\left(x+y\right)^2}{16xy}+\dfrac{\sqrt{xy}}{2\left(x+y\right)}+\dfrac{\sqrt{xy}}{2\left(x+y\right)}\)

\(A\ge\dfrac{7.4xy}{16xy}+3\sqrt[3]{\dfrac{\left(x+y\right)^2xy}{16.4.xy\left(x+y\right)^2}}=\dfrac{5}{2}\)

Dấu "=" xảy ra khi \(x=y\)

Thủy Hồ
Xem chi tiết
dia fic
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2020 lúc 17:12

\(\dfrac{\left(x+y+1\right)^2}{xy+x+y}\ge\dfrac{3\left(xy+x+y\right)}{xy+x+y}=3\)

\(\Rightarrow A=\dfrac{8\left(x+y+1\right)^2}{9\left(xy+x+y\right)}+\dfrac{\left(x+y+1\right)^2}{9\left(xy+x+y\right)}+\dfrac{xy+x+y}{\left(x+y+1\right)^2}\)

\(A\ge\dfrac{8}{9}.3+2\sqrt{\dfrac{\left(x+y+1\right)^2\left(xy+x+y\right)}{\left(xy+x+y\right)\left(x+y+1\right)^2}}=\dfrac{10}{3}\)

Dấu "=" xảy ra khi \(x=y=1\)

ghdoes
Xem chi tiết
Tin Trần Thị
Xem chi tiết
Lmao lmoa
Xem chi tiết
Trọng Lễ
Xem chi tiết
A TV
Xem chi tiết
Đoàn Đức Hà
1 tháng 9 2021 lúc 17:29

\(A=x^2+y^2-xy-x+y+1\)

\(12A=12x^2+12y^2-12xy-12x+12y+12\)

\(=3\left(x^2+2xy+y^2\right)+9x^2+9y^2+4-18xy-12x+12y+8\)

\(=3\left(x+y\right)^2+\left(3x-3y-2\right)^2+8\ge8\)

Dấu \(=\)khi \(\hept{\begin{cases}x+y=0\\3x-3y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{1}{3}\end{cases}}\)

Vậy \(minA=\frac{2}{3}\).

Khách vãng lai đã xóa
Dương Thế Duy
Xem chi tiết
Đinh Đức Hùng
17 tháng 5 2017 lúc 21:12

\(Q=x^2+y^2+xy=\left(x^2+y^2-2xy\right)+3xy=\left(x-y\right)^2+3xy=3xy+4\)

\(x-y=2\Rightarrow y=x-2\)thay vào Q ta được :

\(Q=3x\left(x-2\right)+4=3\left(x^2-2x\right)+4=3\left[\left(x^2-2x+1\right)-1\right]+4=3\left(x-1\right)^2+1\)

Vì \(3\left(x-1\right)^2\ge0\forall x\) nên \(Q=3\left(x-1\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra <=> \(x=1\Rightarrow y=-1\)

Vậy GTNN của Q là 1 tại \(x=1;y=-1\)