Chứng minh ( 6 100 − 1 ) ⋮ 5
A=1/2^2+1/100^2 Chứng minh rằng A<1
B=1/1^2+1/1^2+1/3^2+...+1/100^2 Chứng minh rằng B<1 3/4 (hỗn số nhé)
C=1/1^2+1/4^2+1/6^2+...+1/100^2 Chứng minh rằng C<1/2
D=1/4^2+1/5^2+1/6^2+...+1/99^2+1/100^2 Chứng minh rằng 1/5<D<1/3
Giup mình nha mình đang cần gấp
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
Chứng minh : 7/12 < 1/ 1×2 + 1/ 3×4 + 1/ 5×6 + ........ + 1/ 99 ×100 < 5/6
Ta có:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)
Ta có:\(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{75};\frac{1}{76}>\frac{1}{77}>...>\frac{1}{100}\)
Tự giải tiếp hay nhờ thầy cô giảng tiếp đi nha bn, mỏi tay nên ko thể làm đc nữa !!
M=1/2*3/4*5/6*....*99/100
N=2/3*4/5*6/7*...*100/101
a, chứng minh rằng: M<N
b, tính M*N
c, chứng minh rằng: M<1/10
1,Chứng minh rằng: 1<1/5+1/6+1/7+....+1/17<2
2,Cho A=1/2× 3/4×5/6×....×99/100
Chứng minh rằng 1/15<A<1/10
Cho M = 1/2 . 3/4 . 5/6 .... 99/100
N = 2/3 . 4/5 . 6/7 .... 100/101
a) chứng minh M < N
b) Tìm tích M
c) Chứng minh M < 1/10
Ai nhanh thì tick
a) Mỗi biểu thức M và N đều có 50 thừa số
Ta thấy \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
Vậy \(M< N\)
b) \(M.N=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{99}{100}.\frac{100}{101}\)
\(=\frac{1}{101}\)
c) Vì \(M< N\)nên \(M.M< M.N\)hay \(M.M< \frac{1}{101}< \frac{1}{100}\). Do đó \(M.M< \frac{1}{100}=\frac{1}{10}.\frac{1}{10}\)suy ra \(M< \frac{1}{10}\)( Vì \(M>0\))
a) Cho P=5+5^2+5^3+5^4+5^5+...+5^102 .Chứng minh P:6 b) Cho A=1+4+4^2+4^3+...+4^100 Chứng minh A:5 c) Cho B = 1+2+2^2+2^3+...2^98 Chứng minh B:7 d) Cho C =1+3+3^2+3^3+...+3^104 Chứng minh C:40
Cho M=1/2. 3/4 .5/6 . ..........99/100; N=2/3 . 4/5 . 6.7. .......100/101
a)chứng minh M<N
b)tìm tích M.N
c)chứng minh M<1/10
Chứng minh rằng1/6<1/5^2+1/6^2+1/7^2+........+1/100^2<1/4
Đặt \(B=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}\)
Ta thấy:
\(B=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\)
\(\Rightarrow B< \dfrac{1}{4}\)
Ta lại thấy:
\(B>\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}=\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{6}\)
\(\Rightarrow B>6\)
\(\Rightarrow\dfrac{1}{6}< B< \dfrac{1}{4}\left(dpcm\right)\)
ChoA=1/5^2+1/6^2+...+1/100^2. Chứng minh rằng 1/6<A<1/4
*Có : 52 < 5.6 => \(\frac{1}{5^2}>\frac{1}{5.6}\)
62 < 6.7 =>\(\frac{1}{6^2}>\frac{1}{6.7}\)
....
1002 < 100 . 101 => \(\frac{1}{100^2}>\frac{1}{100.101}\)
Cộng từng vế có :
\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...\frac{1}{100}-\frac{1}{101}\)
\(A>\frac{1}{5}-\frac{1}{101}\)
Mà \(\frac{1}{5}-\frac{1}{101}=\frac{101-5}{105}=\frac{96}{505}\)
=> \(A>\frac{96}{505}\)
Mà \(\frac{1}{6}=\frac{96}{576}< \frac{96}{505}\)
=> \(A>\frac{1}{6}\)(1)
*Có 52 > 5.4 => \(\frac{1}{5^2}< \frac{1}{5.4}\)
.......
1002 > 100.99 => \(\frac{1}{100^2}< \frac{1}{100.99}\)
Cộng từng vế có :
........ => A < \(\frac{96}{400}\)
Có \(\frac{1}{4}=\frac{100}{400}>\frac{96}{400}\)
=> A < \(\frac{1}{4}\)(2)
Từ (1)(2) => đpcm
\(\text{Ta thấy :}\)
\(\frac{1}{5^2}>\frac{1}{5.6}\)
\(\frac{1}{6^2}>\frac{1}{6.7}\)
\(......................................\)
\(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(\Rightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow A>\frac{1}{5}-\frac{1}{101}=\frac{101-5}{105}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\)
\(\Rightarrow A>\frac{1}{6}\left(1\right)\)
\(\text{Lại thấy :}\)
\(\frac{1}{5^2}< \frac{1}{5.4}\)
\(\frac{1}{6^2}< \frac{1}{5.6}\)
\(..................................\)
\(\frac{1}{100^2}< \frac{1}{100.99}\)
\(\text{Tương tự như trên ta tính được }:\)
\(A< \frac{96}{400}< \frac{100}{400}=\frac{1}{4}\)
\(\Rightarrow A< \frac{1}{4}\left(2\right)\)
\(\text{Từ (1) và (2)}\Rightarrow\frac{1}{6}< A< \frac{1}{4}\)
Chứng minh: (6^100 - 1)chia hết cho 5
vì số 6^100=6.6.6.6.6.6.....6.6.6 có 100 số
mà 6.6 chắc chắn =6 suy ra 6.6.6.6....6.6.6 sẽ có tận cùng =6
sau đó còn -1 thì chữ số tận cung sẽ =5
vì số nào có chữ số tận cùng =5 hoặc 0 sẽ chia hết cho 5
suy ra só đó chia hết cho 5