Cho \(\frac{a}{b}=\frac{c}{d}\)
Cm:\(\frac{4a-5b}{4a+5b}=\frac{4c-5d}{4c+5d}\)
cho \(\frac{a}{b}=\frac{c}{d}cm:\frac{4a-5b}{4a+5b}=\frac{4c-5d}{4c+5d}\)
giúp mình nha
a/b=c/d <=>a/c=b/d
=>4a/4c=5b/5d
Áp dụng.. ta có:
4a/4c=5b/5d=4a-5b/4c-5d=4a+5b/4c+5d
=>4a-5b/4a+5b=4c-5d/4c+5d(đpcm)
Tick nhé
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)ta rút ra được:
\(\frac{4a-5b}{4a+5b}\)=\(\frac{4c-5d}{4c+5d}\)
Cho:
\(\frac{a}{b}=\frac{c}{d}\)chứng minh\(\frac{4a-5b}{4a+5b}=\frac{4c-5d}{4c+5d}\)
HELP ME! giải chi tiết giúp mình nha! Thank you!
Vì : a/b=c/d nên =>a/c=b/d
Đặt: a/c=b/d=k thì =>a=ck;b=dk
Thay :a=ck và b=dk vào 2a-3b/4a+5b có :
2a-3b/4a+5b=2ck-3dk/4ck+5dk=k(2c-3d)/k(4c+5d)=2c-3d/4c+5d
Tu đây suy ra : 2a-3b/4a+5b=2c-3d/4c+5d
****
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\).CMR : \(\frac{2a+3b}{2c+3d}=\frac{4a-5b}{4c-5d}\)
Cho :
\(\frac{7a-11b}{4a+5b}=\frac{7c-11d}{4c+5d}\)
CMR :
\(\frac{a}{b}=\frac{c}{d}\)
ta có:
\(\frac{7a-11b}{4a+5b}=\frac{7c-11d}{4c+5d}\)
\(\Rightarrow\frac{7a-11b}{7c-11d}=\frac{4a+5b}{4c+5d}\)
\(\Leftrightarrow\frac{7a}{7c}=\frac{11b}{11d}=\frac{4a}{4c}=\frac{5b}{5d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Mặt khác:
\(\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrowđpcm\)
ta có:
7a−11b4a+5b=7c−11d4c+5d7a−11b4a+5b=7c−11d4c+5d
⇒7a−11b7c−11d=4a+5b4c+5d⇒7a−11b7c−11d=4a+5b4c+5d
⇔7a7c=11b11d=4a4c=5b5d⇒ac=bd⇔7a7c=11b11d=4a4c=5b5d⇒ac=bd
Mặt khác:
ac=bd⇔ab=cdac=bd⇔ab=cd
⇒đpcm
Chứng minh \(\frac{4a+2b}{4c+2d}=\frac{7a-5b}{7c-5d}\) \(=\frac{a}{b}=\frac{c}{d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{4a+2b}{4a+2d}\left(1\right)\)
\(\frac{a}{c}=\frac{b}{d}=\frac{7a-5b}{7c-5d}\left(2\right)\)
Từ (1)(2) => đpcm
\(\frac{4a^4+5b^4}{4c^4+5d^4}=\frac{a^2b^2}{c^2d^2}\)
cho a/b =c/d
giải giúp mk mk like mạnh cho
có thể chứng minh mà ko phải đặt k ko
Chứng minh rằng từ tỉ lệ thức a/b = c/d ta rút ra được: 4a - 5b/4a + 5b = 4c - 5d = 4c + 5d
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{4a}{4c}=\frac{5b}{5d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{4a}{4c}=\frac{5b}{5c}=\frac{4a-5b}{4c-5d}\) (1)
\(\frac{4a}{4c}=\frac{5b}{5d}=\frac{4a+5b}{4c+5d}\) (2)
Từ (1) và (2) => \(\frac{4a-5b}{4c-5d}=\frac{4a+5b}{4c+5d}\)
\(\Rightarrow\frac{4a-5b}{4a+5b}=\frac{4c-5d}{4c+5d}\left(đpcm\right).\)
Chúc bạn học tốt!
cho \(\frac{a}{b}\)=\(\frac{c}{d}\)cmr:\(\frac{4a^4+5b^4}{4c^4+5d^4}\)= \(\frac{a^2.b^2}{c^2.d^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{4a^4}{4c^4}=\frac{5b^4}{5d^4}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{4a^4}{4b^4}=\frac{5b^4}{5d^4}=\frac{4a^4+5b^4}{4b^4+5d^4}\)
\(\frac{4a^4}{4b^4}=\frac{a^4}{b^4}\)
vì \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^4}{c^4}=\frac{a}{c}\cdot\frac{b}{d}\cdot\frac{a}{c}\cdot\frac{b}{d}=\frac{a^2}{c^2}\cdot\frac{b^2}{d^2}\)
\(\frac{a^4}{c^4}=\frac{a^2}{c^2}\cdot\frac{b^2}{d^2}=\frac{4a^4+5b^4}{4c^4+5d^4}\left(đpcm\right)\)