Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lãnh Hạ Thiên Băng
Xem chi tiết
Minh Anh
22 tháng 9 2016 lúc 22:26

Có: \(\left(x+y+z\right)^2-x^2-y^2-z^2\) 

\(=x^2+y^2+z^2+2xy+2yz+2xz-x^2-y^2-z^2\)

\(=2xy+2yz+2xz\)

\(=2\left(xy+yz+xz\right)\)


 

Kiều Bích Huyền
22 tháng 9 2016 lúc 22:32

\(\left[\left(x+y\right)+z\right]^2=\left[\left(x+y\right)^2+2.\left(x+y\right)z+z^2\right]=x^2+2xy+y^2+2xz+2yz+z^2\)\(+z^2\)

Thay vào: x^2+y^2+z^2+ 2xy+2yz+2xz - x^2 - y^2 - z^2= 2(xy+yz+xz) (đpcm)

Xem chi tiết
Nguyễn Linh Chi
21 tháng 5 2020 lúc 6:59

Ta có: 

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy\left(x+y\right)+3xyz\right]\)

\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(x+y\right).z-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yx-3xz-3yz-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

=> \(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz\)

Khách vãng lai đã xóa
Phương Hà
Xem chi tiết
Lê Thành An
Xem chi tiết
Tuấn Minh Nguyễn
Xem chi tiết
Phùng Minh Quân
6 tháng 11 2018 lúc 21:52

hùi nãy mem nào k sai cho t T_T t buồn 

\(VT\ge6\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-2\left(xy+yz+zx\right)+2.\frac{9}{4\left(x+y+z\right)}\)

\(=6\left(x+y+z\right)^2-2.\frac{\left(x+y+z\right)^2}{3}+\frac{9}{2\left(x+y+z\right)}=6.\left(\frac{3}{4}\right)^2-2.\frac{\left(\frac{3}{4}\right)^2}{3}+\frac{9}{2.\frac{3}{4}}\)

\(=\frac{27}{8}-\frac{3}{8}+6=9\)

\(\Rightarrow\)\(VT\ge9\) ( đpcm ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)

Chúc bạn học tốt ~ 

BuBu siêu moe 방탄소년단
Xem chi tiết
Akai Haruma
7 tháng 10 2021 lúc 8:36

Lời giải:

$P=(xy+yz+xz)^2+(x^2-yz)^2+(y^2-zx)^2+(z^2-xy)^2$
$=x^2y^2+y^2z^2+z^2x^2+2x^2yz+2xy^2z+2xyz^2+x^4+y^2z^2-2x^2yz+y^4+z^2x^2-2xzy^2+z^4+x^2y^2-2xyz^2$

$=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2z^2x^2$

$=(x^2+y^2+z^2)^2=10^2=100$

Lưu Đức Mạnh
Xem chi tiết
ThanhNghiem
Xem chi tiết
Vui lòng để tên hiển thị
29 tháng 9 2023 lúc 21:22

`@ x+y+z=1`.

`<=>` \(\left\{{}\begin{matrix}x=1-y-z\\y=1-z-x\\z=1-x-y\end{matrix}\right.\)

`P=(x+y)^2/(xy+1-x-y).(y+z)^2/(yz-y-z+1).(x+z)^2/(xy-x-y+1)`.

`<=> ((1-z)^2(1-y)^2(1-x)^2)/((1-x)(1-y)(1-y)(1-z)(1-z)(1-x).`

`=1.`

Vậy `P` không phụ thuộc vào giá trị của biến.

KCLH Kedokatoji
Xem chi tiết
tth_new
20 tháng 10 2020 lúc 15:54

1111111111111111111

\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)

Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)

Là xong.

Khách vãng lai đã xóa