Cho a=1+2+3+4+...+n và b=2.n+1 với n thuộc N,n lớn hơn hoặc bằng 2
CMR:2 số a,b nguyên tố cùng nhau
Cho a = 1+2+3+....+n và b = 2n+1 (Với n thuộc N, n lớn hơn hoặc bằng 2). Chứng minh: a và b là hai số nguyên tố cùng nhau.
Ta có : \(a=1+2+3+...+n=\frac{n\left(n+1\right)}{2}\) , b = 2n+1
Gọi ƯCLN(a,b)=d (\(d\ge1\))
Ta có : \(\begin{cases}\frac{n\left(n+1\right)}{2}⋮d\\2n+1⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}n\left(n+1\right)⋮d\\2n+1⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}4n^2+4n⋮d\\4n^2+4n+1⋮d\end{cases}\)
=> \(\left(4n^2+4n+1\right)-\left(4n^2+4n\right)⋮d\) hay \(1⋮d\)
=> \(d\le1\) mà \(d\ge1\Rightarrow d=1\)
=> đpcm
Xét n = 2k
- a = lẻ => b = chẵn
Mà chẵn lẻ tương phản, vậy suy ra được đpcm
Xét n = 2k + 1
- a = chẵn <=> b lẻ
Mà chẵn lẻ tương phản, vậy suy ra được đpcm
Vậy a và b là hai số nguyên tố cùng nhau. (với n thuộc N, n >=2)
Câu 5:Cho a= 1+2+3+...+n và b= 2n+1 (Với n thuộc N, n lớn hơn hoặc bằng 2)
Chứng minh : a và b là 2 số nguyên tố cùng nhau.
Gọi d là ước chung nếu có của cả a và b
=> a chia hết cho d nên 8a cũng chia hết cho d
đồng thời : b chia hết cho d nên b2 cũng chia hết cho d ( b2 )
=> ( b2 - 8.a ) chia hết cho d
mà : a = 1 + 2 + 3 + ... + n = n ( n + 1 ) / 2 = ( n2 + n ) /2
và b2 = ( 2n + 1 )2 = 4n2 + 4n + 1
=> : (b2 - 8a ) = ( 4n2 + 4n +1 ) - ( 4n2 + 4n ) = 1
Vậy : ( 8a - b2 ) chia hết cho d <=> 1 chia hết cho d => d = 1
NÊN ước chung của a và b là 1 nên a và b nguyên tố cùng nhau ( đpcm )
Cho: a=1+2+3+4+...+n và b=2n +1 ( Với n là số tự nhiên và n lớn hơn hoặc bằng 2). Chứng minh: a và b là hai số nguyên tố cùng nhau
Cho a = 1+2+3+......+n
b = 2n+1 ( n thuộc N ; n lớn hơn hoặc bằng 2 )
CMR a và b nguyên tố cùng nhau.
\(a=\frac{n\left(n+1\right)}{2}\)
Ta có: \(n\left(n+1\right)⋮2\left(n\in N\right)\)
Đặt \(ƯC\left(a;b\right)=d\)
\(\Rightarrow n\left(n+1\right)⋮d,2n+1⋮d\)
\(\Rightarrow\left(2n+1\right).n-n\left(n+1\right)⋮d\)
\(\Rightarrow2n^2+n-n^2-n⋮d\)
\(\Rightarrow n^2⋮d\Rightarrow n⋮d\)
\(\Rightarrow2n+1-2n⋮d\) (vì 2n + 1 chia hết cho d)
\(\Rightarrow1⋮d\Rightarrow d=1\)
Vậy a và b nguyên tố cùng nhau.
Cho A= 1+2+3+..+n và B =2n+1 (Với n thuộc N , n > hoặc bằng 2)
Chứng minh :a và b là hai số nguyên tố cùng nhau
Cho A= 1+2+3+..+n và B =2n+1 (Với n thuộc N , n > hoặc bằng 2)
Chứng minh :a và b là hai số nguyên tố cùng nhau
Cho a=1+2+3+4+...+n và b=2n+1 (n thuộc N ;n > hoặc = 2).Chứng minh a và b là 2 số nguyên tố cùng nhau .
Bài giải
Ta có: a = 1 + 2 + 3 + 4 +...+ n; b = 2n + 1 (n \(\inℕ\); n > 2)
Suy ra a = \(\frac{n\left(n+1\right)}{2}\)(a chẵn vì n > 2); b = 2n + 1 (b lẻ)
Vì n > 2
Nên a > 2 và b > 2
Mà a chẵn và b lẻ
Suy ra a không chia hết cho b và ngược lại
Vậy a và b là 2 số nguyên tố cùng nhau.
Làm thử nha do lâu r không làm dạng này.
a= \(\frac{n\left(n+1\right)}{2}\)
Gọi ước chung lớn nhất của a và b là d( \(d\inℕ^∗\))
Ta có \(a⋮d\)hay \(\frac{n\left(n+1\right)}{2}⋮d\Rightarrow n\left(n+1\right)⋮d\Rightarrow\orbr{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
Nếu \(n⋮d\)thì \(2n⋮d\)\(\Rightarrow b-2n⋮d\)hay \(1⋮d\Rightarrow d=1\)
Nếu \(n+1⋮d\Rightarrow2n+2⋮d\Rightarrow2n+2-b⋮d\Rightarrow1⋮d\Rightarrow d=1\)
Vậy d=1 hay a và b là hai số nguyên tố cùng nhau (ĐPCM)
Bn Trần Công Mạnh làm sai rồi nhé
Cho a=1+2+3+...+n và b=2n+1 (với n thuộc N và n> hoặc =2)
Chứng minh a và b là 2 số nguyên tố cùng nhau
Ta có: a = 1+2+3+...+n
= (n+1)(n-1+1)
= (n+1)n
Gọi UCLN(n(n+1),2n+1) = d
=> n(n+1) chia hết cho d
và 2n+1 chia hết cho d
Không biết nữa
Bài 1 : Cho A=\(n^2\)- n với n là số nguyên tố lớn hơn 3. Chứng minh A chia hết cho 24
Bài 2 : a) Cho A=\(n^3-n^2+3n-3\)với n là số nguyên dương. Tìm n để A là số nguyên tố
b) Cho 9 số nguyên dương a1,a2,....,a9 đôi một khác nhau ( nghĩa là ko có số nào giống nhau )và có tổng bằng 220. Chứng minh trong 9 số đó tồn tại 4 số có tổng lớn hơn hoặc bằng 110