Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hùng Phan
Xem chi tiết
Hùng Phan
25 tháng 8 2017 lúc 16:33

help me

Rau
25 tháng 8 2017 lúc 20:47

Sin - cos-tan phang vào =))

Thái Dương Lê Văn
Xem chi tiết
Thái Dương Lê Văn
Xem chi tiết
Tiểu thư sky
Xem chi tiết
Băng Y
Xem chi tiết
Nguyệt Lam
19 tháng 2 2021 lúc 8:15

a) Vì \(\Delta ABC\) cân tại A, có AH là đường cao

\(\Rightarrow AH\) vừa là đường cao, vừa là đường phân giác của \(\Delta ABC\)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}=\dfrac{\widehat{A}}{2}\)

Xét \(\Delta ABH\) và \(\Delta ACH\) có:

\(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)

\(\widehat{AHB}=\widehat{AHC}=90^0\)

\(AH\): cạnh chung

\(\Rightarrow\Delta ABH=\Delta ACH\left(ch-gn\right)\)

Băng Y
19 tháng 2 2021 lúc 12:17

thật ra chủ yếu là mk muốn tìm lời giải của phần c cơ phần a,b mk lm đc lâu r

 

Mickey Nhi
Xem chi tiết
ERROR
Xem chi tiết
H.Linh
21 tháng 4 2022 lúc 9:42

 

Vì ΔABC cân tại A nên đường phân giác của góc ở đỉnh A cũng là đường cao từ A.

Suy ra: AD ⊥ BC

Ta có: CH ⊥ AB (gt)

Tam giác ABC có hai đường cao AD và CH cắt nhau tại D nên D là trực tâm của ∆ABC

Suy ra BD là đường cao xuất phát từ đỉnh B đến cạnh AC.

Vậy BD ⊥ AC.

Trần Khánh Linh
Xem chi tiết
Nguyễn Anh Việt
29 tháng 1 2022 lúc 17:16

mình hong bik làm

Khách vãng lai đã xóa
Khánh Linh Nguyễn
Xem chi tiết

a: Xét ΔHCA vuông tại H và ΔACB vuông tại A có

\(\widehat{C}\) chung

Do đó: ΔHCA đồng dạng với ΔACB

b: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CB=CA^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)

c: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{6}=\dfrac{CD}{8}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=BC=10cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

=>\(BD=\dfrac{30}{7}\left(cm\right);CD=\dfrac{40}{7}\left(cm\right)\)