Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bảnh Pháp
Xem chi tiết
Vong Cơ
Xem chi tiết
thuc quyen thái
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 12 2021 lúc 12:03

Bài 2: 

a: Xét tứ giác MIKQ có

MI//QK

MI=QK

Do đó: MIKQ là hình bình hành

mà MI=MQ

nên MIKQ là hình thoi

22 - Đỗ Nhật Minh - 6A17
Xem chi tiết
Nguyễn Ngọc Anh Minh
24 tháng 10 2023 lúc 10:00

M N Q P A I K

MN//PQ (cạnh đối hbh) => MI//KQ

Ta có

\(MI=\dfrac{MN}{2};KQ=\dfrac{PQ}{2}\) Mà MN=PQ (cạnh đối hbh) => MI=KQ

=> MIKQ là hbh (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

b/

Ta có

MA=MQ (gt) (1)

\(MN=2MQ\left(gt\right)\Rightarrow MQ=\dfrac{MN}{2}\) (2)

Ta có

\(MI=\dfrac{MN}{2}\) (3)

Từ (1) (2) (3) \(\Rightarrow MA=MI=\dfrac{MN}{2}\) => tg AMI cân tại M

Ta có

\(\widehat{AMI}=\widehat{AMP}-\widehat{M}=180^o-120^o=60^o\)

Xét tg AMI có

\(\widehat{MAI}+\widehat{MIA}+\widehat{AMI}=180^o\)

\(\Rightarrow\widehat{MAI}+\widehat{MIA}=180^o-\widehat{AMI}=180^o-60^o=120^o\)

Mà \(\widehat{MAI}=\widehat{MIA}\) (góc ở đáy tg cân)

\(\Rightarrow\widehat{MAI}=\widehat{MIA}=\dfrac{120^o}{2}=60^o\)

\(\Rightarrow\widehat{MAI}=\widehat{MIA}=\widehat{AMI}=60^o\Rightarrow\Delta AMI\) là tg đều

c/

Xét hbh MNPQ có

MQ//NP => MA//NP

MA=MQ (gt); MQ=NP (cạnh đối hbh)

=> MA=NP

=> APMN là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

Ta có

\(MI=AI=\dfrac{MN}{2}\)  (cạnh tg đều)

\(NI=\dfrac{MN}{2}\)

\(\Rightarrow AI=NI=\dfrac{MN}{2}\) => tg AIN cân tại I

Ta có \(\widehat{AIN}=\widehat{MIN}-\widehat{AIM}=180^o-60^o=120^o\)

Xét tg cân AIN có

\(\widehat{AIN}+\widehat{IAN}+\widehat{INA}=180^o\)

\(\Rightarrow\widehat{IAN}+\widehat{INA}=180^o-\widehat{AIN}=180^o-120^o=60^o\)

Mà \(\widehat{IAN}=\widehat{INA}\) (góc ở đáy tg cân)

\(\Rightarrow\widehat{IAN}=\widehat{INA}=\dfrac{60^o}{2}=30^o\)

Xét tg AMN có

\(\widehat{MAN}+\widehat{AMI}+\widehat{INA}=180^o\)

\(\Rightarrow\widehat{MAN}=180^o-\widehat{AMI}-\widehat{INA}=180^o-60^o-30^o=90^o\)

=> APMN là hình chữ nhật (hình bình hành có 1 góc vuông là HCN

 

Bùi Tiến Long
Xem chi tiết
Kim Trân Ni
Xem chi tiết
๖²⁴ʱTú❄⁀ᶦᵈᵒᶫ
23 tháng 3 2020 lúc 9:04

a, Ta cs : \(\hept{\begin{cases}MI//QK\\MI=QK\end{cases}}\)

=> Tứ giác MIKQ là hình bình hành 

Ta lại cs : MI = MQ 

=> Tứ giác MIKQ là hình thoi 

Khách vãng lai đã xóa
toàn nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 21:56

a: Xét ΔBAC có BM/BA=BN/BC=1/2

nên MN//AC và MN=1/2AC

Xét ΔDAC có DQ/DA=DP/DC

nên PQ//AC và PQ=1/2AC

=>MN//PQ và MN=PQ

b: Xét tứ giác MNPQ có

MN//PQ

MN=PQ

=>MNPQ là hình bình hành

Nguyennhathuy
Xem chi tiết
Lê Hải Minh
Xem chi tiết
Nguyễn Hải Linh
13 tháng 3 2017 lúc 20:46

đùa à thiếu chiều cao tính bằng mắt có thánh tính được

Đặng Trần Vi Thảo
13 tháng 3 2017 lúc 20:47

158 nha

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 1 2018 lúc 12:50

Đáp án B

Ta có: MN // BS ⇒ C M C B = C N C S

MQ // CD // AB (do ABCD là hình bình hành nên AB //CD) ⇒ C M C B = D Q D A

NP // CD ⇒ C N C S = D P D S

Do đó: D P D S = D Q D A  PQ // SA (Định lý Ta - lét trong tam giác SAD)

Lại có MN // BS và SB ∩  SA = S

Do đó MN không thể song song với PQ

Xét tứ giác MNPQ có NP // MQ (//CD)

Do đó MNPQ là hình thang.

Vậy khẳng địn (1) và (3) đúng.

Đáp án B