Tìm nghiệm nguyên của phương trình:
5(x+y)+3=3xy
Tìm nghiệm nguyên của phương trình:
\(\left(x+5\right)\left(y+6\right)=3xy\)
`(x+5)(y+6)=3xy`
`<=>xy+5y+6x+30=3xy`
`<=>5y+6x-2xy=-30`
`<=>2xy-6x-5y=30`
`<=>2x(y-3)-5y+15=45`
`<=>2x(y-3)-5(y-3)=45`
`<=>(y-3)(2x-5)=45`
Đến đây lập pt ước số rồi giải thui =D
tìm các nghiệm nguyên của phương trình sau: x^3+y^3-3xy-3=0
nhận xét chủ chương (sự chuẩn bị của nhà lý)
Bài 1 : tìm x ; y nguyên dương
2xy + x + y = 83
Bài 2 tìm nghiệm nguyên của phương trình :
a ) x2 + 2y2 + 3xy - x - y + 3 = 0
b ) 6x2y3 + 3x2 - 10y3 = -2
Tìm nghiệm nguyên của phương trình x+y = 3xy - 9
1: Tìm tất cả các nghiệm nguyên của phương trình: \(x^3-3xy=6y-1\)
2: Tìm các số nguyên tố x, y sao cho \(x^2+3xy+y^2\)là số chính phương
tìm nghiệm nguyên dương của phương trình
2(x+y)+16=3xy
Câu hỏi của Tiểu thư họ Vũ - Toán lớp 9 - Học toán với OnlineMath
Tìm nghiệm nguyên của phương trình : \(3xy+x-y=1\)
Ta có 3xy+x-y=1
=>3xy+x-y-1=0
<=>3xy=0 và x-y-1=0
Giải hệ 2 phương trình ta có
TH(1)x=0=>y=-1
TH(2)x=0 =>y=1
Vậy phương thức trên có 2 cặp nghiệm
k mk nha
Cho p là số nguyên tố sao cho phương trình x^3 + y^3 - 3xy = p - 1 có nghiệm nguyên dương. Tìm giá trị lớn nhất của p
Theo đề: \(p=x^3+y^3-3xy+1=\left(x+y\right)^3+1-3xy\left(x+y\right)-3xy\)
\(=\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1\right]-3xy\left(x+y+1\right)\)
\(=\left(x+y+1\right)\left(x^2+y^2-x-y-xy+1\right)\)
Vậy \(\left(x+y+1\right)\)và \(\left(x^2+y^2-x-y-xy+1\right)\)là các ước của p, mà p là số nguyên tố nên 1 trong 2 ước trên phải bằng 1 và ước còn lại bằng chính p
+) \(\hept{\begin{cases}x+y+1=1\Leftrightarrow x=-y\\x^2+y^2-x-y-xy+1=p\end{cases}}\)---> Loại, vì x,y nguyên dương nên x không thể bằng -y.
+) \(\hept{\begin{cases}x+y+1=p\Leftrightarrow x+y=p-1\\x^2+y^2-x-y-xy+1=1\end{cases}}\)---> Xét vế dưới:
\(x^2+y^2-x-y-xy=0\)---> Áp dụng 1 số BĐT đơn giản:
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)và \(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow-xy\ge-\frac{\left(x+y\right)^2}{4}\)
Suy ra: \(x^2+y^2-x-y-xy\ge\frac{\left(x+y\right)^2}{2}-\left(x+y\right)-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}-\left(x+y\right)\)
\(\Rightarrow0\ge\frac{\left(x+y\right)^2}{4}-\left(x+y\right)\Leftrightarrow0\le x+y\le4\Rightarrow0\le p-1\le4\Leftrightarrow1\le p\le5\)
Vậy số nguyên tố p lớn nhất thỏa mãn đề bài là p = 5
Khi đó x = y = 2.
B1 Tìm nghiệm nguyên của các phương trình sau
a)2(x+y)+16=3xy
b)x+y=xy
c)5(x+y)+2=3xy
d)2(x+y)=5xy
e)p(x+y)=xy với p là snt