Tính tổng các giá trị của tham số m để số phức z = m - 1 + 2 m - 1 i 1 - m i là số thực.
A. -3
B. -2
C. -1
D. 0
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thoả mãn z. z =1 và |z-3-4i|=m. Tính tổng các phần tử thuộc S.
A. 10.
B. 42.
C. 52.
D. 40.
Trên tập ℂ , cho số phức z = i + m i - 1 với m là tham số thực khác -1. Tìm tất cả các giá trị của tham số m để z. z ¯ = 5
A. m = -3
B. m = 1
C. m = ± 2
D. m = ± 3
Trên tập ℂ , cho số phức z = i + m i - 1 với m là tham số thực khác -1. Tìm tất cả các giá trị của tham số m để z. z ¯ = 5
A. m = -3
B. m = 1
C. m = ± 2
D. m = ± 3
Trên tập ℂ , cho số phức z = i + m i − 1 , với m là tham số thực khác -1. Tìm tất cả các giá trị của tham số m để z . z ¯ = 5.
A. m = − 3.
B. m = 1.
C. m = ± 2.
D. m = ± 3.
Đáp án D.
Ta có z . z ¯ = 5 ⇔ z 2 = 5 ⇔ m 2 + 1 2 = 5 ⇔ m 2 = 9 ⇔ m = ± 3.
Cho các số phức z 1 = 1, z 2 = 2 − 3 i và các số z thỏa mãn z − 1 − i + z − 3 + i = 2 2 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P = z − z i + z − z 2 . Tính tổng S = M + m
A. S = 4 + 2 5 .
B. S = 5 + 17 .
C. S = 1 + 10 + 17 .
D. S = 10 + 2 5 .
Đáp án B.
Số phức z 1 = 1 có điểm biểu diễn là A 1 ; 0 , số phức z 2 = 2 − 3 i có điểm biểu diễn là B 2 ; − 3
Gọi E x ; y là điểm biểu diễn của số phức z, khi đó z = x + y i , x , y ∈ ℝ
Suy ra
P = x − 1 + y i + x − 2 + y + 3 i = x − 1 2 + y 2 + x − 2 2 + y + 3 2
⇒ P = E A + E B .
Mặt khác
z − 1 − i + z − 3 + i = 2 2 ⇔ x − 1 + y − 1 i + x − 3 + y + 1 i = 2 2
⇔ x − 1 2 + y − 1 2 + x − 3 2 + y + 1 2 = 2 2 *
Gọi M 1 ; 1 , N 3 ; − 1 thì E M + E N = 2 2 = M N ⇒ Điểm E thuộc đoạn MN.
Ta có phương trình đường thẳng MN là x + y + z − 2 = 0 với x ∈ 1 ; 3
Bài toán trở thành:
Cho điểm E thuộc đoạn MN . Tìm giá trị lớn nhất của biểu thức P = E A + E B
Đặt f ( x ) = x + y − 2. Ta có
f 1 ; 0 = 1 + 0 − 2 = − 1 f 2 ; − 3 = 2 − 3 − 2 = − 3 ⇒ f 1 ; 0 . f 2 ; − 3 = 3 > 0 . Suy ra hai điểm A,B nằm cùng về một phía đối với MN . Gọi A' là điểm đối xứng với A qua MN thì A ' 2 ; 1 .Khi đó
P = E A + E B = E A ' + E B ≥ A ' B = 4 .
Dấu = xảy ra khi và chỉ khi
E ∈ A ' B ⇒ E = A ' B ∩ M N ⇒ E 2 ; 0 hay z = 2.
Do điểm E luôn thuộc đường thẳng MN nên P = E A + E B đạt giá trị lớn nhất khi E ≡ M hoặc E ≡ N .
Có
M A + M B = 1 + 17 N A + N B = 2 5 ⇒ M A + M B > N A + N B ⇒ max P = M A + M B = 1 + 17.
Vậy
M = 1 + 7 , m = 4 ⇒ S = M + m = 5 + 17 .
Cho các số phức z 1 = 1 , z 2 = 2 − 3 i và các số z thỏa mãn z − 1 − i + z − 3 + i = 2 2 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P = z − z i + z − z 2 . Tính tổng
A. S = 4 + 2 5 .
B. S = 5 + 17 .
C. S = 1 + 10 + 17 .
D. S = 10 + 2 5 .
Tìm tập hợp tất cả các giá trị của tham số m để có đúng 8 số phức z thỏa mãn đồng thời các điều kiện z + z ¯ + z - z ¯ = z 2 và z = m
Tìm tập hợp tất cả các giá trị của tham số m để có đúng 8 số phức z thỏa mãn đồng thời các điều kiện z + z ¯ + z - z ¯ = z 2 và z = m ?
D. 2 ; 2
B. 2 ; 2 2
C. 2 ; 2
D. 2 ; 2 2
Đặt z=x+yi ta có hệ đều kiện:
Ta có (1) là tập hợp các cạnh của hình vuông ABCD có tâm là gốc toạ độ độ dài cạnh bằng a = m 2 2 ; là đường tròn (C) có tâm là gốc toạ độ O bán kính bằng R = m.
Để có đúng 8 số phức thoả mãn thì (C) phải nằm giữa đường tròn ngoại tiếp và đường tròn nội tiếp hình vuông
Chọn đáp án D.
Tìm tập hợp tất cả các giá trị của tham số m để có đúng 4 số phức z thỏa mãn đồng thời các điều kiện z + z ¯ + z - z ¯ = z 2 và z = m ?
A. 2 ; 2 2
B. 2 ; 2 2
C. 2
D. 2 ; 2 2