AC=\(\sqrt{AC^2+BC^2}\)
vậy AB nhỏ nhất khi nào
Cho các số không âm a,b,c thỏa mãn không có hai số nào đồng thời bằng 0 và a2+b2+c2=2(ab+bc+ac). Tìm giá trị nhỏ nhất của biểu thức:
\(A=\sqrt{\frac{ab}{a^2+b^2}}+\sqrt{\frac{bc}{b^2+c^2}}+\sqrt{\frac{ca}{c^2+a^2}}\)
cho ba số thực dương a b c thỏa mãn ab+bc+ac≤1. tìm giá trị nhỏ nhất của biểu thức P biết:
P= \(\dfrac{1}{\sqrt{a^2+b^2-abc}}+\dfrac{1}{\sqrt{a^2+c^2-abc}}+\dfrac{1}{\sqrt{c^2+b^2-abc}}\)
cm\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
\(a^2+b^2+c^2\ge ab+ac+bc\) khi \(a=b=c\)
Áp dụng bất đẳng thức \(AM-GM\) cho 2 số dương ta có:
\(\left\{{}\begin{matrix}\dfrac{a+b}{2}\ge\sqrt{ab}\\\dfrac{b+c}{2}\ge\sqrt{bc}\\\dfrac{a+c}{2}\ge\sqrt{ac}\end{matrix}\right.\)
Cộng theo 3 vế ta có:
\(\dfrac{a+b}{2}+\dfrac{b+c}{2}+\dfrac{a+c}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
\(\Rightarrow\dfrac{1}{2}a+\dfrac{1}{2}b+\dfrac{1}{2}b+\dfrac{1}{2}c+\dfrac{1}{2}a+\dfrac{1}{2}c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)
\(\Rightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\left(đpcm\right)\)
\(a=b=c\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=2ab\\b^2+c^2=2bc\\a^2+c^2=2ac\end{matrix}\right.\)
Cộng theo 3 vế ta có:
\(a^2+b^2+b^2+c^2+a^2+c^2=2ab+2bc+2ac\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
\(\Rightarrow a^2+b^2+c^2=ab+bc+ac\)
Ngược lại,khi \(a\ne b\ne c\) thì \(\left\{{}\begin{matrix}a^2+b^2>2ab\\b^2+c^2>2bc\\a^2+c^2>2ac\end{matrix}\right.\) ta có thể dễ dàng cm được \(a^2+b^2+c^2>ab+bc+ac\)
Cho a, b, c là 3 số thực dương thỏa mãn a + b + c = 1. Chứng minh:
\(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ac}{b+ac}}\le\frac{3}{2}\)
Đẳng thức xảy ra khi nào?
\(VT=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{\frac{a}{a+c}+\frac{b}{b+c}}{2}\)
Tượng tự ta có \(\hept{\begin{cases}\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\le\frac{\frac{c}{b+c}+\frac{a}{a+b}}{2}\end{cases}}\)
\(\Rightarrow VT\le\frac{\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{c}{a+c}+\frac{a}{c+a}\right)+\left(\frac{c}{b+c}+\frac{b}{c+b}\right)}{2}\)
\(\Rightarrow VT\le\frac{\frac{a+b}{a+b}+\frac{c+a}{c+a}+\frac{b+c}{b+c}}{2}=\frac{3}{2}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
1. Cho tam giác ABC có góc BAC lớn hơn hoặc bằng 90o. CMR AB + AC nhỏ hơn hoặc bằng \(\sqrt{2}.BC\)
2. Cho tam giác ABC có góc BAC lớn hơn hoặc bằng 120o. CMR AB + AC nhỏ hơn hoặc bằng \(2.BC \over{\sqrt{3}}\)
Cho tam giác ABC vuông tại A tính BH,CH, AC ,AH biết:
1, AB =12 cm BC= 13cm
AB =5 cm BC= 1dm
AB =3\(\sqrt{3}\) cm BC= 9cm
2,Tính BC ,AH, BH ,CH
AB =24 cm AC= 18cm
AB =2\(\sqrt{2}\) cm AC= 2\(\sqrt{2}\)cm
AB =3\(\sqrt{3}\) cm AC= 9cm
1. Căn bậc ba của `8` là?
2. Tính \(\sqrt{16a^2}\)
3. Trục căn thức dưới mẫu của \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\) là?
4. Cho tam giác ABC vuông ở C, hệ thức nào đúng:
`a) tan B = (AB)/(BC)`
`b) tan B = (AC)/(AB)`
`c) tan B = (AC)/(BC)`
`d) tan B = (AB)/(AC)`
1. \(\sqrt[3]{8}=2.\)
2. \(A=\sqrt{16a^2}=4\left|a\right|\)
\(\Rightarrow\left[{}\begin{matrix}A=4a\left(a\ge0\right)\\A=-4a\left(a< 0\right)\end{matrix}\right..\)
3. \(B=\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}=\dfrac{\left(9-2\sqrt{3}\right)\left(3\sqrt{6}+2\sqrt{2}\right)}{\left(3\sqrt{6}\right)^2-\left(2\sqrt{2}\right)^2}=\dfrac{23\sqrt{6}}{46}=\dfrac{\sqrt{6}}{2}.\)
4. C.
Cho điểm A nằm ngoài đường tròn (O;R) và OA = 2R. Vẽ các tiếp tuyến AB, AC với đường tròn (O) [B, C∈∈(O)]. Khẳng định nào sau đây đúng?
A. \(AB=AC=\frac{BC}{2}=R\sqrt{5}\)
B. \(AB=AC=BC=R\sqrt{5}\)
C.\(AB=AC=BC=R\sqrt{3}\)
D. \(AB=AC=BC=\frac{\sqrt{3}}{3}R\)
lớp 9 làm quen không bạn ^^
cho các số thực dương a,b,c thỏa mãn a+b+c=ab+bc+ac. Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{a^2}{a^2+3bc}+\frac{b^2}{b^2+3ac}+\frac{c^2}{c^2+3ab}+\sqrt{a+b+c}\)
chứng minh rằnga) \(\frac{ab\sqrt{ab}}{a+b}+\frac{bc\sqrt{bc}}{b+c}+\frac{ac\sqrt{ac}}{a+c}\) nhỏ hơn hoặc bằng \(\frac{ab+bc+ca}{2}\)(với a,b,c>=0)
b)\(b\sqrt{a-1}+a\sqrt{b-1}\)<=ab với a,b>=1
a)Áp dụng BĐT AM-GM ta có
\(\frac{ab\sqrt{ab}}{a+b}\le\frac{ab\sqrt{ab}}{2\sqrt{ab}}=\frac{ab}{2}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\frac{bc\sqrt{bc}}{b+c}\le\frac{bc}{2};\frac{ac\sqrt{ac}}{a+c}\le\frac{ac}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT=Σ\frac{ab\sqrt{ab}}{a+b}\le\frac{ab+bc+ca}{2}=VP\)
Khi \(a=b=c\)
b)Áp dụng tiếp AM-GM:
\(b\sqrt{a-1}\le\frac{b\left(a-1+1\right)}{2}=\frac{ab}{2}\)
\(a\sqrt{b-1}\le\frac{a\left(b-1+1\right)}{2}=\frac{ab}{2}\)
Cộng theo vế 2 BĐT trên ta có:
\(VT=b\sqrt{a-1}+a\sqrt{b-1}\le ab=VP\)
Khi \(a=b=1\)