cho tam giác ABC vuông tại A có D thuộc BC . Vẽ DE vuông góc AB tại E ; DF vuông góc AC tại F
a, I là trung điểm của EF cm A,I,D thẳng hàng
b, điểm Đ ở vị trí nào trên cạnh BC thì EF có độ dài ngắn nhất ? Vì sao?
cho ABC có AB=6cm AC = 8cm vuông tại A a ) tính BC b) vẽ tia phân giác BD của góc B ( D thuộc AC ), từ D vẽ DE vuông góc với BC (E thuộc BC ) chứng minh tam giác ABC = tam giác EBD . c ) ED cắt AB tại F chúng minh tam giác ABC =tam giác EBF
a: BC=10cm
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó; ΔABD=ΔEBD
cho tam giác ABC vuông tại A vẽ tia phân giác BD ( D thuộc AC) . Vẽ DE vuông góc với BC tại E. Chứng minh
a, tam giác ABC = tam giác EBD
b, AB =DE
c, BA cắt DE tại H , C/m rằng BD vuông góc HC
d, so sánh AD và BC
Cho Tam giác ABC vuông tại A có AB <AC . Vẽ AH vuông góc với BC (H thuộc BC ),D là điểm trên cạnh AC sao cho AD = AB . Vẽ DE vuông góc với BC (E thuộc BC ) . Chứng minh rằng : Tam giác HAE vuông cân
cho tam giác abc vuông tại A(AB<AC) vẽ AH vuông góc BC(H thuộc BC) D là điểm trên cạnh AC sao cho AD = AB Vẽ DE vuông góc với BC (E thuộc BC) DK vuông góc với AH tại K Chứng minh
a, AH = DK
b, Tam giác AHE vuông cân
cho tam giác abc có ab=3 ac=4 bc=5
a, chứng minh tam giác abc vuông tại a
b, vẽ phân giác bd (d thuộc ac ) , từ d vẽ de vuông góc với bc (e thuộc bc ) chứng minh da=de
c,ed cắt ab tại f . chứng minh tam giác adf=edc rồi suy ra df>de
a) Xét ΔABC có \(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: DA=DE(hai cạnh tương ứng)
c) Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(Hai cạnh tương ứng)
mà DC>DE(ΔDEC vuông tại E)
nên DF>DE
cho tam giác ABC vuông ại A và có AB = 3cm AC=4cma, so sánh góc của tam giác ABC b, vẽ phân giác BD (D thuộc AC) từ D vẽ DE vuông góc BC (E thuộc BC ) chứng minh DA=DE c, ED cắt AB tại F chứng minh ta giác ADF = tam giác EDC rồi suy ra DF > DE
a: BC=5cm
AB<AC<BC
=>góc C<góc B<góc A
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
c: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
=>DF=DC>DE
cho tam giác ABC có AB =6cm, AC=8cm, BC=10cm
a) chứng ninh tam giác ABC vuông tại A
b) vẽ tia phân giác BD của góc ABC ( D thuộc AC) từ D vẽ DE vuông BC (E thuộc BC) .Chứng minh DA=DE
c) kéo dài ED và BA cắt nhau tại F. Chứng minh DF>DE
a. ta có : \(BC^2=AB^2+AC^2\)
\(10^2=8^2+6^2\)
=> ABC vuông tại A ( pitago đảo )
b. xét tam giác vuông BAD và tam giác vuông BED có:
B: góc chung
BD : cạnh chung
Vậy...
=> AD = AE ( 2 góc tưng ứng )
a, Ta có : \(BC^2=AB^2+AC^2\Rightarrow100=36+64\)* đúng *
Vậy tam giác ABC vuông tại A
b, Xét tam giác ABD và tam giác CBD ta có :
^ABD = ^CBD ( BD là phân giác )
^BAD = ^BCD = 900
BD _ chung
Vậy tam giác ABD và tam giác CBD ( ch - gn )
=> AD = DC ( 2 cạnh tương ứng )
cho tam giác abc cân tại a( góc a nhỏ hơn 90độ) vẽ đường cao ad của tam giác abc .
a)chứng minh tam giác ABD = tam giác ACD, từ đó chứng minh D là trung điểm BC
b)từ D vẽ DE vuông góc với AB tại E(E thuộc AB),vẽ DF vuông góc với AC tại F(F thuộc AC).Chứng minh tam giác AEF cân
c) gọi I là trung điểm của AB, CI cắt AD tại K. Chứng minh CI + @AD lớn hơn 3AI.
a: Xét ΔABD vuông tại D và ΔACD vuông tại C có
AB=AC
AD chung
Do đó: ΔABD=ΔACD
=>DB=DC
=>D là trung điểm của BC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
\(\widehat{EAD}=\widehat{FAD}\)(ΔABD=ΔACD)
Do đó: ΔAED=ΔAFD
=>AE=AF
=>ΔAEF cân tại A
Cho tam giác ABC có AB=6cm ; AC=8cm :=;BC=10cm
a)CM: tam giác ABC vuông tại A
b)vẽ tia BD là PG của góc ABC ( D thuộc AC) , qua điểm D kẻ đường thẳng DE vuông góc BC (E thuộc BC) và cắt đường thẳng AB tại F . CM: tam giác FDC cân
a) Ta có: \(BC^2=10^2=100\)
\(AB^2+AC^2=6^2+8^2=100\)
Do đó: \(BC^2=AB^2+AC^2\)(=100)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔBAD=ΔBED(cạnh huyền-góc nhọn)
Suy ra: DA=DE(Hai cạnh tương ứng)
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(Cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(Hai cạnh tương ứng)
Xét ΔDFC có DF=DC(cmt)
nên ΔDFC cân tại D(Định nghĩa tam giác cân)
giúp tôi với
Cho tam giác ABC vuông tại A ( AB < AC), BD là đường phân giác (D thuộc AC). Vẽ DE vuông góc BC tại E .vẽ CF vuông góc với BD , CF cắt AB tại M. CM : M,D,E thẳng hàng