f(x) chia x+1 dư 4,chia x^2+1 dư 2x+3,tìm phần dư khi chia f(x) cho (x+1)(x^2+1)
f(x) chia x+1 dư 4,chia x^2+1 dư 2x+3,tìm phần dư khi chia f(x) cho (x+1)(x^2+1)
Đa thức f(x) chia cho x+1 dư 4 , chia cho x\(^2\)+1 dư 2x+3 . TÌm phần dư khi chia f(x) cho (x+1)(x\(^2\)+1)
Lời giải:
Đặt $f(x)=Q(x)(x+1)(x^2+1)+ax^2+bx+c$ trong đó $ax^2+bx+c$ là đa thức dư khi chia $f(x)$ cho $(x+1)(x^2+1)$
Ta có:
$f(x)=Q(x)(x+1)(x^2+1)+a(x^2-1)+b(x+1)+a-b+c$
$=(x+1)[Q(x)(x^2+1)+a(x-1)+b]+a-b+c$
Do đó $f(x)$ chia $x+1$ có dư là $a-b+c$
$\Rightarrow a-b+c=4(*)$
Lại có:
$f(x)=Q(x)(x+1)(x^2+1)+a(x^2+1)-a+bx+c$
$=(x^2+1)[Q(x)(x+1)+a]+bx+(c-a)$
$\Rightarrow f(x)$ khi chia $x^2+1$ có dư là $bx+(c-a)$
$\Rightarrow bx+(c-a)=2x+3$
$\Rightarrow b=2; c-a=3(**)$
Từ $(*);(**)\Rightarrow a=\frac{3}{2}; b=2; c=\frac{9}{2}$
1. Đa thức f(x) khi chia cho x+1 dư 4, khi chia cho x2+1 dư 2x + 3. Tìm phần dư khi chia f(x) cho (x+1)(x2+1)
Đa thức f(x) khi chia cho x+1 dư 4, khi chia cho x2 +1 dư 2x +3. Tìm phần dư khi chia f(x) cho (x+1)(x2+1).
Đa thức f(x) khi chia cho x + 1 thì dư 4, khi chia cho x2 + 1 thì dư 2x+3. Tìm phần dư khi chia f(x) cho (x+1)(x2+1) ?
đa thức f(x) khi chia cho x+1 dư 4,khi chia cho x^2 +1 dư 2x+3.Tim phần dư khi chia f(x) cho (x+1)(x^2+1)
đa thức f(x) ki chia cho x+1 dư 4 chia cho x^2+1 dư 2x+1. tìm phần dư khi chia đa thức f(x) cho (x+1)(x^2+1)
Đa thức f(x) chia cho x+1 dư 4, f(x) chia cho x2+1 dư 2x+3. Tìm phần dư khi chia f(x) cho (x+1)(x2+1)
Lời giải:
Đa thức $(x+1)(x^2+1)$ có bậc 3 nên đương nhiên dư sẽ có bậc nhỏ hơn $3$
Đặt $f(x)=(x+1)(x^2+1)Q(x)+ax^2+bx+c$ $(a,b,c\in\mathbb{R}$)
Trong đó: $Q(x)$ và $ax^2+bx+c$ lần lượt là đa thức dương và đa thức dư khi chia $f(x)$ cho $(x+1)(x^2+1)$
Theo bài ra ta có:
$f(-1)=a-b+c=4(1)$
$f(x)=(x+1)(x^2+1)Q(x)+a(x^2+1)+bx+c-a$ nên $f(x)$ chia $x^2+1$ dư $bx+c-a$
$\Rightarrow bx+c-a=2x+3$ với mọi $x$
\(\Rightarrow \left\{\begin{matrix} b=2\\ c-a=3\end{matrix}\right.(2)\)
Từ $(1);(2)\Rightarrow a=\frac{3}{2}; b=2; c=\frac{9}{2}$
Vậy phần dư là $\frac{3}{2}x^2+2x+\frac{9}{2}$
theo định lí bơ- zu ta có: f(x) : x+1 dư 4 =>f(-1)=4
Đa thức f(x) khi chia cho x+1 thì dư 4, khi chia cho x^2 + 1 thì dư 2x+3. Tìm dư khi chia f(x) cho (x+1)(x^2 + 1)
Áp dụng định lý Bezout ta được:
\(f\left(x\right)\)chia cho x+1 dư 4 \(\Rightarrow f\left(-1\right)=4\)
Vì bậc của đa thức chia là 3 nên \(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)q\left(x\right)+ax^2+bx+c\)
\(=\left(x^2+1\right)\left(x+1\right)q\left(x\right)+\left(ax^2+a\right)-a+bx+c\)
\(=\left(x^2+1\right)\left(x+1\right)q\left(x\right)+a\left(x^2+1\right)+bx+c-a\)
\(=\left(x^2+1\right)\left[\left(x+1\right)q\left(x\right)+a\right]+bx+c-a\)
Vì \(f\left(-1\right)=4\)nên \(a-b+c=4\left(1\right)\)
Vì f(x) chia cho \(x^2+1\)dư 2x+3 nên
\(\hept{\begin{cases}b=2\\c-a=3\end{cases}\left(2\right)}\)
Từ (1) và (2) \(\Rightarrow\hept{\begin{cases}a+c=6\\b=2\\c-a=3\end{cases}\Leftrightarrow\hept{\begin{cases}a=\frac{3}{2}\\b=2\\c=\frac{9}{2}\end{cases}}}\)
Vậy dư f(x) chia cho \(\left(x+1\right)\left(x^2+1\right)\)là \(\frac{3}{2}x^2+2x+\frac{1}{2}\)