tinh GTNN A= I x+2014I+Ix+2015I+2016
Tìm x, y biết:
Ix-2013I + Ix-2014I + Iy-2015I + Ix-2016I = 3
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-2013\right|+\left|x-2014\right|+\left|x-2016\right|\)
\(=\left|x-2013\right|+\left|x-2014\right|+\left|2016-x\right|\)
\(\ge x-2013+0+2016-x=3\)
Lại có: \(\left|y-2015\right|\ge0\forall y\)
\(\Rightarrow VT=\left|x-2013\right|+\left|x-2014\right|+\left|x-2016\right|+\left|y-2015\right|\ge3=VP\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-2013\ge0\\x-2014=0\\x-2016\le0\\y-2015=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x=2014\\x\le2016\\y=2015\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=2014\\y=2015\end{matrix}\right.\)
Tìm x, y biết:
Ix-2013I + Ix-2014I + Iy-2015I + Ix-2016I = 3
A=Ix-2014I + Ix-2015I + Ix-2016I
thách ai làm được
tim gia tri nho nhat
Tìm GTNN hoặc GTLN của:
A= 7+Ix+2015I
B=15-(4+x)2
C= Căn x-10 -2016
A=7+|x+2015|
Ta có: |x+2015|>=0(với mọi x)
=>7+|x+2015|>=7 hay A>=7
Do đó, GTNN của A là 7 khi:
x+2015=0
x=0-2015
x=-2015
Vậy GTNN của A là 7 khi x=-2015
B=15-(4+x)2
Ta có: (4+x)2>=0(với moi x)
=>15-(4+x)2<=15 hay A<=15
Do đó, GTLN của A là 15 khi:
4+x=0
x=0-4
x=-4
Vậy GTLN của A là 15 khi x=-4
C=\(\sqrt{x-10}-2016\)
Ta có: \(\sqrt{x-10}\)>=0(với mọi x khác âm)
=>\(\sqrt{x-10}\)-2016>=-2016 hay C>=-2016
Do đó, GTNN của C là -2016 khi:
x-10=0
x=0+10
x=10
Vậy GTNN của C là -2016 khi x=10
câu C mk chưa học nhưng mk nghĩ thế nào làm thế nấy, ko chắc ăn
1/ Tìm x, y biết:
a/ x.3 = y.7 và 2x - y = 4
b/ Ix - 1I - \(\frac{1}{2}=\frac{3}{4}\)
c/ I x + 1 I + I y - 2 I = 0
d/ (22 :4) . 2x = 4
2/ Tìm GTNN của:
a/ A = 3. I2x + 1I +5
b/ B = I x - 2014I + I x - 2015I
3/ Cho \(\frac{a}{b}=\frac{c}{d}\) CMR:
\(\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)
\(c,Đặt\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=k.b\)
\(\Rightarrow c=d.k\)
\(-Tacó:\frac{2a-3b}{2a+3b}=\frac{2k.b-3b}{2k.b+3b}=\frac{b.\left(2k-3\right)}{b\left(2k+3\right)}=\frac{2k-3}{2k+3}\left(1\right)\)
\(-Tacó:\frac{2c-3d}{2c+3d}=\frac{2d.k-3d}{2d.k+3d}=\frac{d.\left(2k-3\right)}{d.\left(2k+3\right)}=\frac{2k-3}{2k+3}\left(2\right)\)
\(Từ\left(1\right),\left(2\right)\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)
Tìm giá trị nhỏ nhất của biểu thức A=Ix-2010I+Ix-2012I+Ix-2014I
Vì |x-2010| ≧ 0 với mọi x
|x-2012| ≧ 0 với mọi x
|x-2014| ≧ 0 với mọix
Suy ra : |x-2010|+|x-2012|+|x-2014| ≧ 0
hay A ≧ 0
Dấu =xảy ra <=> \(\hept{\begin{cases}\left|x-2010\right|=0\\\left|x-2012\right|=0\\\left|x-2014\right|=0\end{cases}}\)<=>\(\hept{\begin{cases}x-2010=0\\x-2012=0\\x-2014=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2010\\x=2012\\x=2014\end{cases}}\)
Vậy GTNN(A) = 0 <=> x ∈ { 2010;2012;2014}
Từ đầu đến A>= 0 là đúng nhưng dưới là sai nhé bạn!
tim x
a.Ix+5I+Ix-4I=4x-2
b.Ix+1I+Ix+2I+...+Ix+2015I=2016x
Tìm giá trị nhỏ nhất của C=Ix-2013I+Ix-2014I.
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(C=\left|x-2013\right|+\left|x-2014\right|\)
\(=\left|x-2013\right|+\left|2014-x\right|\)
\(\ge\left|x-2013+2014-x\right|=1\)
Dấu "=" khi \(2013\le x\le2014\)
Vậy \(Min_C=1\) khi \(2013\le x\le2014\)
Giá trị nhỏ nhất của biểu thức A = Ix + 2^2015I + 2