Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Xuân Mai
Xem chi tiết
le thi khanh huyen
Xem chi tiết
ho quoc dung
Xem chi tiết
ho quoc dung
11 tháng 9 2016 lúc 8:39

ace nào giải giúp với ạ

Hàa UwU
Xem chi tiết
Hoang Nguyen Viet
Xem chi tiết
Phan Văn Hiếu
28 tháng 7 2017 lúc 15:27

\(P=\frac{x+2}{\sqrt{x}^3-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(P=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)

\(P=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

2,

\(A=\frac{5\left(\sqrt{7}-\sqrt{2}\right)}{\left(\sqrt{7}-\sqrt{2}\right)\left(\sqrt{7}+\sqrt{2}\right)}+\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}-\frac{7\sqrt{7}}{7}\)

\(A=\frac{5\left(\sqrt{7}-\sqrt{2}\right)}{7-2}+\frac{\left(\sqrt{2}+1\right)}{2-1}-\sqrt{7}\)

\(A=\sqrt{7}-\sqrt{2}+\sqrt{2}+1-\sqrt{7}=1\)

\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

Xuân Thái
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 21:24

a: \(\dfrac{x^2-7}{x+\sqrt{7}}=x-\sqrt{7}\)

b: \(\dfrac{x^2-5}{x-\sqrt{5}}=x+\sqrt{5}\)

gh
Xem chi tiết
Khánh Ngọc
30 tháng 10 2020 lúc 20:54

1. \(VT=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=2+\sqrt{3}-2+\sqrt{3}=VP\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
30 tháng 10 2020 lúc 20:55

Bài 1.

Ta có : \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{3+4\sqrt{3}+4}-\sqrt{3-4\sqrt{3}+4}\)

\(=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)

\(=\left|\sqrt{3}+2\right|-\left|\sqrt{3}-2\right|\)

\(=\sqrt{3}+2-\left(2-\sqrt{3}\right)\)

\(=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\left(đpcm\right)\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
30 tháng 10 2020 lúc 21:04

Bài 2.

\(P=\left(\frac{1}{x-\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}-1}\right)\div\left(\frac{2}{x-1}+\frac{1}{\sqrt{x}+1}\right)\)

ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\div\left(\frac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)

\(=\frac{x+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\times\frac{\sqrt{x}-1}{1}=\frac{x+1}{\sqrt{x}}\)

Xét P - 2 ta có :

\(P-2=\frac{x+1}{\sqrt{x}}-2=\frac{x+1}{\sqrt{x}}-\frac{2\sqrt{x}}{\sqrt{x}}=\frac{x-2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

Với \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\Rightarrow\hept{\begin{cases}\left(\sqrt{x}-1\right)^2>0\\\sqrt{x}>0\end{cases}}\Rightarrow\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}>0\)

=> \(P-2>0\)

=> \(P>2\)

Khách vãng lai đã xóa
Hương Phùng
Xem chi tiết
Kiêm Hùng
4 tháng 7 2021 lúc 21:01

\(1.\\ A=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\\ =\left|2+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\\ =2+\sqrt{3}+2-\sqrt{3}=4\)

\(2.\\a.\\ P=3x-\sqrt{\left(x-5\right)^2}=3x-\left|x-5\right|\\ b.\\ x=2\Rightarrow P=3\)

\(3.\\ M=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\left|x-1\right|}{x-1}\)

\(\cdot x>1\Rightarrow M=1\\ \cdot x=1\Rightarrow M=0\\\cdot x< 1\Rightarrow M=-1\)

Edogawa Conan
4 tháng 7 2021 lúc 21:00

B1.

Ta có:A\(=\sqrt{3+4\sqrt{3}+4}+\sqrt{3-4\sqrt{3}+4}\)

            \(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)

           \(=\sqrt{3}+2+\sqrt{3}-2=2\sqrt{3}\)

hnamyuh
4 tháng 7 2021 lúc 21:01

Bài 1 : 

\(A=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\\ =\sqrt{3}+2+2-\sqrt{3}=4\)

Bài 2 : 

a) \(P=3x-\sqrt{\left(x-5\right)^2}=3x-\left|x-5\right|\)

b) khi x = 2 thì \(P=3.2-\left|2-5\right|=3\)

Bài 3 : 

\(M=\dfrac{\sqrt{\left(\sqrt{x}-1\right)^2}}{x-1}=\dfrac{\left|\sqrt{x}-1\right|}{x-1}\)

Nguyễn Ý Nhi
Xem chi tiết
Hoàng Như Quỳnh
23 tháng 6 2021 lúc 9:31

\(ĐKXĐ:x\ge0;x\ne1;0\)

\(A=\frac{2x+2}{\sqrt{x}}+\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(A=\frac{2x+2}{\sqrt{x}}+\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(A=\frac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)

\(A=\frac{2x+2+2\sqrt{x}}{\sqrt{x}}\)

\(A=2\sqrt{x}+\frac{2}{\sqrt{x}}+2\)

a/d bđt cauchy 

\(2\sqrt{x}+\frac{2}{\sqrt{x}}\ge2\sqrt{2.2}=2.2=4\)

\(A\ge4+2=6\)

\(< =>A>5\)

dấu "=" xảy ra khi x=1

Khách vãng lai đã xóa
Demngayxaem
Xem chi tiết
Hoàng Thị Lan Hương
25 tháng 7 2017 lúc 16:09

a. ĐK \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(B=\frac{2x+2}{\sqrt{x}}+\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{2x+2}{\sqrt{x}}+\frac{x+\sqrt{x}+1}{\sqrt{x}}-\frac{x-\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}=\frac{2x+2\sqrt{x}+2}{\sqrt{x}}\)

b. Ta có \(B-5=\frac{2x+2\sqrt{x}+2}{\sqrt{x}}-5=\frac{2x-3\sqrt{x}+2}{\sqrt{x}}=\frac{2\left(x-2.\sqrt{x}.\frac{3}{4}+\frac{9}{16}\right)-\frac{9}{8}+2}{\sqrt{x}}\)

\(=\frac{2\left(\sqrt{x}-\frac{3}{4}\right)^2+\frac{7}{8}}{\sqrt{x}}\)

Ta thấy \(\hept{\begin{cases}2\left(\sqrt{x}-\frac{3}{4}\right)^2+\frac{7}{8}>0\\\sqrt{x}>0\forall x>0\end{cases}\Rightarrow B-5>0\Rightarrow B>5}\)

Vậy \(B>5\)