Chứng minh rằng 2^27+2^25 chia hết cho 5
1/ Chứng minh rằng với mọi n thuộc N thì 50n + 25 chia hết cho 25 nhưng ko chia hết cho 50
2/ Chứng minh rằng 5 số chẵn liên tiếp thì chia hết cho 10
3/ Tìm n thuộc N
n + 3 chia hết cho n
3n + 3 chia hết cho n
27 - 5n chia hết cho n
Chứng tỏ rằng 2^27+2^25 chia hết cho 5
\(2^{27}+2^{25}=2^{25}.\left(2^2+1\right)=2^{25}.\left(4+1\right)=2^{25}.5⋮5\)
chứng minh:\(2^{27}+2^{25}\)chia hết cho 5
Ta có : 227=23.(24)6=8.\(\left(\overline{...6}\right)\)=\(\overline{...8}\)
225=2.(24)6=2.\(\left(\overline{...6}\right)\)=\(\overline{...2}\)
\(\Rightarrow\)227+225=\(\left(\overline{...8}\right)+\left(\overline{...2}\right)=\overline{...0}⋮5\)
Vậy 227+225 \(⋮\)5.
P= 1+2+22+23+24+25+26+27+28. Chứng minh rằng P chia hết cho 3
Bài 1: Chứng minh rằng : 22 + n+2 chia hết cho 2 và không chia hết cho 5
Bài 2 : Cho a€ N* , n€ N* , biết a2 chia hết cho 5 . Chứng minh rằng : a2 +150 chia hết cho 25
Mình đang cần gấp mong các bạn giải nhanh giúp mình.
Bài 1 : Chứng minh rằng số gồm 27 chữ số 1 thì chia hết cho 27.
Bài 2 : Cho A = 13! - 11!
A có chia hết cho 2 ; cho 5 và cho 155 hay không ?
Bài 3 : Tìm các STN chia cho 4 thì dư 1 , chia cho 25 thì dư 3.
Bài 4 : Tìm các STN chia cho 8 thì dư 3 , chia cho 125 thì dư 12.
Đặt A = 1111....1111 (27 chữ số 1)
A=111...100...0( 9 c/s 1 và 18 c/s 0) +111...100...0(9c/s 1 và 9 c/s 0) + 111...1(9 c/s 1)
= 111...1 . 1018 + 111...1 . 109 + 111...1
= 111...1 .(1018 + 109 + 1)
Vì 111...1 có 9 c/s 1 nên tổng các c/s chia hết cho 9 \(\Rightarrow111...1⋮9\)
và (1018 + 109 + 1) chia hết cho 3 ( có tổng các c/s chia hết cho 3)
nên A= 9.k.3.k'=27.k.k' chia hết cho 27 (đpcm)
Câu 1
A = (x+2017).(x+2018).Chứng tỏ rằng A luôn chia hết cho2
Câu 2
Cho C=3^10+3^11+3^12+...+3^16+3^17. Chứng minh rằng C chia hết cho 40
Câu 3
D= 4^25+4^26+4^27+...=4^29+4^30. Chứng minh rằng D chia hết cho 273
Câu 2:
\(C=3^{10}+3^{11}+3^{12}+...+3^{17}.\)
\(C=\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+3^{15}+3^{16}+3^{17}\right).\)
\(C=3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right).\)
\(C=3^{10}\left(1+3+9+27\right)+3^{14}\left(1+3+9+27\right).\)
\(C=3^{10}.40+3^{14}.40.\)
\(C=\left(3^{10}+3^{14}\right).40⋮40\left(đpcm\right).\)
\(C=3^{10}+3^{11}+..+3^{17}\\ =\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+..+3^{17}\right)\\ =3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right)\\ =40\left(3^{10}+3^{14}\right)⋮40\)
1)
+Nếu x lẻ thì x+2017 là chẵn \(⋮2\)
+Nếu x là chẵn thì x+2018 cũng là chãn \(⋮2\)
\(\Rightarrow dpcm\)
chứng minh rằng:
a) 43^2 + 43.17 chia hết cho 60
b) 27^5 - 3^11 chia hết cho 80
a, Ta có :
\(43^2+43.17=43\left(43+17\right)=43.60⋮60\)
\(\rightarrowđpcm\)
b, Ta có :
\(27^5-3^{11}=3^{15}-3^{11}=3^{11}\left(3^4-1\right)=3^{11}.80⋮80\)
\(\rightarrowđpcm\)
Chứng minh rằng: Nếu ( 3n + 4 ) chia hết cho 5 thì ( 27.n2 + 45n + 12 ) chia hết cho 15.
Help me :<