Giải bpt sau :
\(\frac{P_{x+5}}{\left(x-k\right)!}\le60A^{k+2}_{x+3}\)
Giải bất phương trình: \(\frac{P_{n+5}}{\left(n-k\right)!}\le60A^{k+2}_{n+3}\)
Giải bpt sau:
\(\frac{\left(x-1\right)^3\left(x+2\right)^4\left(x-3\right)^5\left(x+6\right)}{x^2\left(x-7\right)^3}\le0\)
giải bpt sau:
\(3x-\frac{x+2}{3}\le\frac{3\left(x-2\right)}{2}+5-x\)
\(3x-\frac{x+2}{3}\le\frac{3\left(x-2\right)}{2}+5-x\)
\(\Leftrightarrow\frac{18x}{6}-\frac{2\left(x+2\right)}{6}\le\frac{9\left(x-2\right)}{6}+\frac{30}{6}-\frac{6x}{6}\)
\(\Rightarrow18x-2x-4\le9x-18+30-6x\)
\(\Leftrightarrow16x-4\le3x+12\)
\(\Leftrightarrow13x\le16\)
\(\Leftrightarrow x\le\frac{16}{13}\)
Vậy bất phương trình có tập nghiệm là: \(S=\left\{x|x\le\frac{16}{13}\right\}\)
Giải bpt sau: \(3x-\frac{x+2}{3}\le\frac{3\left(x-2\right)}{2}+5-x\)
nhân 2 vế với 6
18x - 2x - 4<=9x - 18 + 30 - 6x
16x - 4 <=3x + 12
13x <=16
x<=16/13
Nhân 2 vế với 6
\(\Leftrightarrow18x-2x-4\le9x-18+30-6x\)
\(\Leftrightarrow18x-2x-9x+6x\le-18+30+4\)
\(\Leftrightarrow-13x\le-16\)
\(\Leftrightarrow x\ge\frac{16}{13}\)
giải các bpt sau:
a, | x+2| -|x-1| < x-\(\frac{3}{2}\)
b, \(\left|\frac{-5}{x+2}\right|< \left|\frac{10}{x-1}\right|\)
c, \(\left|\frac{2-3\left|x\right|}{1+x}\right|\le1\)
Giải bpt
\(\frac{\left|x^2-4x\right|+3}{x^2+\left|x-5\right|}\ge1\)
1.giải các bpt sau
a.\(\left(x-3\right)\left(x+3\right)\ge x^2-7x+1\)
b.\(\dfrac{1,5-x}{5}\ge\dfrac{4x+5}{2}\)
2.giải các pt sau
\(x^3+1=x.\left(x+1\right)\)
Giải bpt
\(\frac{9}{\left|x-5\right|-3}\ge\left|x-2\right|\)
ĐKXĐ:...
Xét \(x\le2\)
\(\Rightarrow\frac{9}{5-x-3}\ge2-x\Leftrightarrow9\ge4-4x+x^2\)
\(\Leftrightarrow x^2-4x-5\le0\Leftrightarrow-1\le x\le5\)
\(\Rightarrow-1\le x\le2\)
Xét \(2< x\le5\)
\(\Rightarrow\frac{9}{2-x}\ge x-2\Leftrightarrow9\ge-x^2+4x-4\Leftrightarrow x^2-4x+13\ge0\)
=> \(2< x\le5\)
Xét \(x< 5\)
\(\Rightarrow\frac{9}{x-8}\ge x-2\Leftrightarrow9\ge x^2-10x+16\Leftrightarrow x^2-10x+7\le0\)
\(\Rightarrow5-3\sqrt{2}\le x\le5+3\sqrt{2}\)
\(\Rightarrow5-3\sqrt{2}\le x< 5\)
Cho \(P_{\left(x\right)}=-x^3+x^2-\frac{1}{2}x+2\)2
\(Q_{\left(x\right)}=x^3-\frac{9}{4}x^2+3x-5\)
Tính \(H_{\left(x\right)}=P_{\left(x\right)}+Q_{\left(x\right)}\)
Chứng minh đa thức H(x) không có nghiệm
H(x)=\(-\frac{5}{4}x^2+\frac{5}{3}x-3\)
Áp dụng CT giải PT bậc 2 ta có: \(\Delta=b^2-4ac=\frac{25}{9}-15=-\frac{110}{9}\)
Vì đenta <0 suy ra pt vô nghiệm (DPCM)