Chứng minh rằng: \(\left(x+y\right)^6+\left(x-y\right)^6⋮\left(x^2+y^2\right)\)
Chứng minh rằng với mọi số thực x,y,z luôn có:
\(\left(x+y+z\right)^6+\left(y+z-x\right)^6+\left(z+x-y\right)^6+\left(x+y-z\right)^6\le244\left(x^6+y^6+z^6\right)\)
Chứng minh rằng\(\left(x+y^2\right)\left(y+x^2\right)-\left(x+y\right)\left(x^2+y^2\right)=\left(xy-x\right)\left(xy-y\right)\)
Chứng minh rằng đa thức \(\left(x+y\right)^6+\left(x-y\right)^6\) chia hết cho đa thức \(x^2+y^2\)
\(\left(\left(x+y\right)^2\right)^3+\left(\left(x-y\right)^2\right)^3\)
\(=\left(\left(x+y\right)^2+\left(x-y\right)^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)\)
\(=\left(2x^2+2y^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)\)
\(=2\left(x^2+y^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)⋮\left(x^2+y^2\right)\)
\(\left(x+y\right)^6+\left(x-y\right)^6\)
\(=\left[\left(x+y\right)^2\right]^3+\left[\left(x-y\right)^2\right]^3\)
\(=\left[\left(x+y\right)^2+\left(x-y\right)^2\right]\left(...\right)\)
\(=\left(x^2+2xy+y^2+x^2-2xy+y^2\right)\left(...\right)\)
\(=\left(2x^2+2y^2\right)\left(...\right)\)
\(=2\left(x^2+y^2\right)\left(...\right)⋮x^2+y^2\left(đpcm\right)\)
Cho \(x+y+z=0\). Chứng minh rằng :
\(5\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)=6\left(x^5+y^5+z^5\right)\)
Xét các biểu thức :
\(x^3+y^3+z^3=x^3+y^3+\left(-x-y\right)^3=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)\left(-3xy\right)=-3xy.\left(-z\right)=3xyz\)
\(x^2+y^2+z^2=x^2+y^2+\left(-x-y\right)^2=2\left(x^2+y^2+xy\right)\)
Do đó VT có giá trị là \(5.\left(3xyz\right).2\left(x^2+y^2+xy\right)=30xyz\left(x^2+y^2+xy\right)\)
Xét VP:
\(x^5+y^5+z^5=\left(x^5+y^5\right)+\left(-x-y\right)^5\)
\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)
\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=-5xy.\left[\left(x+y\right)^3-xy\left(x+y\right)\right]\)
\(=-5xy\left(x+y\right)\left(x^2+2xy+y^2-xy\right)\)
\(=5xyz\left(x^2+xy+y^2\right)\)
Do đó VP là \(30xyz\left(x^2+y^2+xy\right)\)
Suy ra điều phải chứng minh.
cho các số dương x,y,z chứng minh rằng:
\(\dfrac{x^2}{\left(x+y\right)\left(x+z\right)}\)+\(\dfrac{y^2}{\left(y+z\right)\left(y+x\right)}\)+\(\dfrac{z^2}{\left(z+x\right)\left(z+y\right)}\)≥\(\dfrac{3}{4}\)
Cho x và y là hai số khác 0 và thỏa mãn x+y khác 0. Chứng minh rằng:
\(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{x^3y^3}\)
Cho \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=\left(x+y-2z\right)^2+\left(y+z-2x\right)^2+\left(x+z-2y\right)^2\)
Chứng minh rằng: x=y=z
Chứng minh rằng nếu:\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(x+y-2z\right)^2\)thì x=y=z
Chứng minh rằng:\(\left(2x^2-y\right)\left(2y^2-x\right)+\left(x+y\right)\left(2x^2+2y^2\right)=\left(2xy+x\right)\left(2xy+y\right)\)