Lời giải:
Ta có:
\((x+y)^6+(x-y)^6=[(x+y)^2]^3+[(x-y)^2]^3=(x^2+2xy+y^2)^3+(x^2-2xy+y^2)^3\)
\(=(x^2+2xy+y^2+x^2-2xy+y^2)[(x^2+2xy+y^2)^2-......]=2(x^2+y^2)(...............)\vdots x^2+y^2\)
Ta có đpcm.
Lời giải:
Ta có:
\((x+y)^6+(x-y)^6=[(x+y)^2]^3+[(x-y)^2]^3=(x^2+2xy+y^2)^3+(x^2-2xy+y^2)^3\)
\(=(x^2+2xy+y^2+x^2-2xy+y^2)[(x^2+2xy+y^2)^2-......]=2(x^2+y^2)(...............)\vdots x^2+y^2\)
Ta có đpcm.
Chứng minh rằng đa thức \(\left(x+y\right)^6+\left(x-y\right)^6\) chia hết cho đa thức \(x^2+y^2\)
Cho \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=4\left(x^2+y^2+z^2-xy-yz-zx\right)\). Chứng minh rằng \(x=y=z\)
chứng minh rằng giá trị biểu thức sau ko hụ thuộc vào biến
a.\(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)
b.\(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\)
c.\(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
Chứng minh rằng:
\(\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz=\left(x+y+z\right)\left(xy+yz+zx\right)\)
Chứng minh rằng:
a) \(\left(x+y\right)^5-x^5-y^5=5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)
b) Cho a + b + c = 0. CMR: \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2\)
Bài 1 : Cho 2 số thực a , b thỏa mãn a + b = 5 và ab = 6 . Hãy tính giá trị của các biểu thức sau : \(a^2+b^2\) ; \(a^3+b^3\); \(a^4+b^4\) ; \(a^5+b^5\) ; \(a^6+b^6\)
Bài 2 :
a) Chứng minh rằng : \(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\) với mọi số thực a , b
b) Cho hằng đẳng thức \(2a^2-5ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\)
c) Chứng minh rằng \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
d) Chứng minh rằng \(\left(ax+by\right)^2+\left(ay-bx\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)\) với mọi số thực a , b , x , y
Chứng minh rằng nếu x,y nguyên thì
\(A=y^4+\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)\)
1) Cho P = \(\left(\dfrac{4x-x^3}{1-4x^2}-x\right):\left(\dfrac{4x^2-x^4}{1-x^2}+1\right)\)
a) rút gọn b) tìm x để P > 0
2) Cho Q = \(\left(\dfrac{x}{x^2-3x+9}-\dfrac{11}{x^3+27}+\dfrac{1}{x+3}\right):\dfrac{x^2-1}{x+3}\)
a) rút gọn b) tìm GTLN
3) Cho A = \(\dfrac{1}{\left(x-y\right)^3}\left(\dfrac{1}{x^3}-\dfrac{1}{y^3}\right)+\dfrac{3}{\left(x-y\right)^4}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+\dfrac{6}{\left(x-y\right)^5}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
chứng minh A là lập phương một số hữu tỉ
Bài 1: Tính giá trị biểu thức:
\(A=5x\left(x-4y\right)-4y\left(y-5x\right)\) với \(x=-\frac{1}{5};y=-\frac{1}{2}\)
\(B=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)+5y^2\left(x^2-xy\right)\)
Với x = \(\frac{1}{2}\); y = 2
Bài 2: Chứng minh rằng:
a) \(\left(4x^2-2xy+y^2\right)\left(2x+y\right)=8x^3+y^3\)
b) \(\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)=x^7+x^5+1\)