Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Phương Linh
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 7 2021 lúc 21:15

Câu này em đã hỏi rồi

1.Tìm GTNN của Bthức : B= 4x2- 6x+1 : (x-2)2    với x ≠ 22. Tìm GTLN của Bthức: C= x2 + 4x - 14  : x2 -2x +1  với x≠ 1gi... - Hoc24

Đình Hưng Mai
Xem chi tiết
Dieulinh Le
Xem chi tiết
Nguyễn Huy Tú
25 tháng 7 2021 lúc 13:56

a, \(-\dfrac{2}{3}+\left|\dfrac{1}{2}x-3\right|\ge-\dfrac{2}{3}\)

Dấu ''='' xảy ra khi x = 6

Vậy GTNN biểu thức trên là -2/3 khi x = 6

b, \(1,6-\left|2x-1\right|\le1,6\)

Dấu ''='' xảy ra khi x = 1/2

Vậy GTLN biểu thức trên là 1,6 khi x = 1/2 

Nguyễn Lê Phước Thịnh
25 tháng 7 2021 lúc 21:55

a) Ta có: \(\left|\dfrac{1}{2}x-3\right|\ge0\forall x\)

\(\Leftrightarrow\left|\dfrac{1}{2}x-3\right|-\dfrac{2}{3}\ge-\dfrac{2}{3}\forall x\)

Dấu '=' xảy ra khi x=6

b) Ta có: \(\left|2x-1\right|\ge0\)

\(\Leftrightarrow-\left|2x-1\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-1\right|+1.6\le1.6\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Nguyễn Hoàng Huyền Trân
Xem chi tiết
Nguyễn Trường Giang
Xem chi tiết
Trần Ngọc Yến Nhi
Xem chi tiết
Omamori Katori
12 tháng 12 2018 lúc 20:06

1.B= -(x^2 - 4x - 3)
= -(x^2 - 2x2 + 4 - 7)
= -(x - 2)^2 + 7 ≤ 7 
 Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
=>Amax = 7 khi x=2
2. chịu tự đi mà làm ngốc thật

Pham Van Hung
12 tháng 12 2018 lúc 20:12

2.ĐK: \(x\ne-1\)

 \(Q=\frac{2x^2+2}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2+\left(x+1\right)^2}{\left(x+1\right)^2}=\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+1\ge1\forall x\)

Dấu "=" xảy ra khi: \(x-1=0\Rightarrow x=1\)

Vậy GTNN của Q là 1 khi x = 1

1. \(B=4x-x^2+3=-x^2+4x-4+7=-\left(x-2\right)^2+7\le7\forall x\)

Dấu "=" xảy ra khi \(x-2=0\Rightarrow x=2\)

Vậy GTLN của B là 7 khi x = 2

Lê Bảo Ngọc
Xem chi tiết
Vo Ngoc Bao Trinh
Xem chi tiết
hya_seije_jaumeniz
25 tháng 7 2018 lúc 17:24

a) Đặt  \(A=-x^2+9x-12\)

\(-A=x^2-9x+12\)

\(-A=\left(x^2-9x+\frac{81}{4}\right)-\frac{33}{4}\)

\(-A=\left(x-\frac{9}{2}\right)^2-\frac{33}{4}\)

Mà  \(\left(x-\frac{9}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge-\frac{33}{4}\Leftrightarrow A\le\frac{33}{4}\)

Dấu "=" xảy ra khi :  \(x-\frac{9}{2}=0\Leftrightarrow x=\frac{9}{2}\)

Vậy  \(A_{Max}=\frac{33}{4}\Leftrightarrow x=\frac{9}{2}\)

b) Đặt \(B=2x^2+10x-1\)

\(B=2\left(x^2+5x+\frac{25}{4}\right)-\frac{29}{4}\)

\(B=2\left(x+\frac{5}{2}\right)^2-\frac{29}{4}\)

Mà  \(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x+\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow B\ge-\frac{29}{4}\)

Dấu "=" xảy ra khi :  \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy  \(B_{Min}=-\frac{29}{4}\Leftrightarrow x=-\frac{5}{2}\)

hya_seije_jaumeniz
25 tháng 7 2018 lúc 17:30

c) Đặt  \(C=\left(2x+6\right)\left(x-1\right)\)

\(C=2x^2-2x+6x-6\)

\(C=2x^2+4x-6\)

\(C=2\left(x^2+2x+1\right)-8\)

\(C=2\left(x+1\right)^2-8\)

Mà  \(\left(x+1\right)^2\ge0\forall x\Rightarrow2\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow C\ge-8\)

Dấu "=" xảy ra khi :  \(x+1=0\Leftrightarrow x=-1\)

Vậy  \(C_{Min}=-8\Leftrightarrow x=-1\)

d) Đặt  \(D=3x-2x^2\)

\(-2D=4x^2-6x\)

\(-2D=\left(4x^2-6x+\frac{9}{4}\right)-\frac{9}{4}\)

\(-2D=\left(2x-\frac{3}{2}\right)^2-\frac{9}{4}\)

Mà  \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-2D\ge-\frac{9}{4}\)

\(\Leftrightarrow D\le\frac{9}{8}\)

Dấu "=" xảy ra khi :  \(2x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{4}\)

Vậy  \(D_{Max}=\frac{9}{8}\Leftrightarrow x=\frac{3}{4}\)

lê thị thu huyền
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
19 tháng 7 2017 lúc 14:17

Ta có : A = 2x2 + 10x - 15 

= 2x2 + 10x - \(\frac{50}{4}-\frac{5}{2}\)

= 2(x2 + 5x - \(\frac{25}{4}\)) - \(\frac{5}{2}\)

= 2(x - \(\frac{5}{2}\) )2 - \(\frac{5}{2}\)

Mà ; 2(x - \(\frac{5}{2}\) )2  \(\ge0\forall x\)

Nên : 2(x - \(\frac{5}{2}\) )2 - \(\frac{5}{2}\) \(\ge-\frac{5}{2}\forall x\)

Vậy Amin = \(-\frac{5}{2}\) , dấu bằng xảy ra khi x = \(\frac{5}{2}\)