cho a, b, c, d là 4 số nguyên dương thỏa mãn: b=a+c/2 và 1/c=1/2.(1/b+1/d) Chứng minh rằng a/b=c/d
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D
Cho a, b, c, d là các số dương thỏa mãn a + b + c + d = 4. Chứng minh rằng:
a/b^2+1 + b/c^2+1 +c/d^2+1 +d/a^2+1 >=2
Áp dụng BĐT Cauchy ta có:
\(\frac{a}{1+b^2}=\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)
Áp dụng tương tự ta được
\(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+d^2}\ge c-\frac{cd}{2};\frac{d}{1+a^2}\ge c-\frac{da}{2}\)
Tương tự ta cũng được
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}=\frac{\left(a+c\right)\left(b+d\right)}{2}\le\frac{\left(a+b+c+d\right)^2}{8}=2\)
Do vậy ta được \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\)
Dấu "=" xảy ra khi a=b=c=d=1
cho a, b,c,d là các số nguyên dương thỏa mãn a<b<c<d. Chứng minh rằng :
a + c/ a + b + c + d < 1/2
b + d/ a + b + c + d > 1/2
Câu 1:
a, Giả sử n là số tự nhiên thỏa mãn điều kiện n(n+1) +6 không chia hết cho 3. Chứng minh rằng 2n^2+n+8 không là số chính phương
b, cho 4 số dương a;b;c;d thỏa mãn điều kiện a^4/b + c^4/d = 1/(b+d) và a^2 + c^2 =1 . Chứng minh rằng (a^2014)/(b^1007) + ( c^ 2014)/(d^1007) = 2/( b+d)^1007
.Mọi người giải giúp Linh nha ^^ Linh đang cần gấp ạ!
cho a,b,c,d là các số nguyên dương đôi 1 khác nhau thỏa mãn:
a/a+b + b/b+c + c/c+d + d/d+a =2. Chứng minh: rằng tích a.b.c.d là 1 số chính phương
Giải nhanh hộ mình với, thanks.
cho a,b,c,d là các số nguyên dương đôi 1 khác nhau thỏa mãn:
a/a+b + b/b+c + c/c+d + d/d+a =2. Chứng minh: rằng tích a.b.c.d là 1 số chính phương
Giải nhanh hộ mình với, thanks.
cho bốn số nguyên dương a,b,c,d thỏa mãn đẳng thức a mũ 2 + b mũ 2 = c mũ 2 + d mũ 2 .chứng minh rằng tổng a+b+c+d là 1 hợp số
Cho các số nguyên dương n,a,b,c,d thỏa mãn n2\(\le\)a<b\(\le\)c<d<(n+1)2. Chứng minh rằng |ad-bc|\(\ge\)1.
cho a,b,c,d là các số nguyên dương thỏa mãn a<b<c<d . Chứng minh rằng :
a ) a + c / a + b + c + d < 1/2
b ) b + d / a + b + c + d > 1/2
Giúp mình nhé các bạn