tìm GTNN của P= \(\frac{-3}{\sqrt{a}+3}\)
\(A=\frac{x\sqrt{x}-3}{x+2\sqrt{x}+3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
tìm GTNN của A
\(A=\sqrt{\frac{x+2}{2}+\frac{3}{11}};B=\frac{5}{17}-3\sqrt{x-5}\)
Tìm GTNN của A
\(A=\frac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
a,Rút gọn A
b,Tìm GTNN của A
\(A=\frac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\frac{2\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{\sqrt{x}+3}\left(Đk:x\ge0;x\ne1\right)\)
\(=\frac{x\sqrt{x}+26\sqrt{x}-19}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x\sqrt{x}+16\sqrt{x}-x-16}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x\left(\sqrt{x}-1\right)+16\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x+16}{\sqrt{x}+3}\)
Ta có:\(\frac{x+16}{\sqrt{x}+3}=\frac{x-9+25}{\sqrt{x}+3}=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)+25}{\sqrt{x}+3}=\sqrt{x}-3+\frac{25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}-6\)
Vì \(x>0\Rightarrow\sqrt{x}+3>0\)
Áp dụng BĐT cô-si cho hai số dương \(\sqrt{x+3}\)và\(\frac{25}{\sqrt{x}+3}\)ta có:
\(\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge2\sqrt{\left(\sqrt{x}+3\right).\frac{25}{\sqrt{x}+3}}\)
\(\Rightarrow A\ge4\)
\(\Rightarrow MinA=4\Leftrightarrow\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\Leftrightarrow\left(\sqrt{x}+3\right)^2=25\Leftrightarrow x=4\left(TMĐK\right)\)
Cho \(A=\sqrt{x+2}+\frac{3}{11};B=\frac{5}{17}-3\sqrt{x-5}\)
a,Tìm GTNN của A
b,Tìm GTLN của B
Q = \(\left(\frac{\sqrt{x}-3}{\sqrt{x}+3}+\frac{\sqrt{x}+3}{\sqrt{x}-3}-\frac{14}{9-x}\right).\frac{\sqrt{x}-3}{2}\)
a) Rút gọn Q
b) Tìm GTNN của Q
Tìm GTNN của A = \(x-\sqrt{xy}+\frac{7y}{12}+\frac{\sqrt{y}}{6}-\frac{8}{3}+\frac{9}{16\sqrt{x}}\)
Cho A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}+\frac{3\sqrt{x}+1}{1-x}\)
1.Rút Gọn A
2. Tìm giá trị A khi X=4
3.Tìm GTNN của A
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}+\frac{3\sqrt{x}+1}{1-x}\)
a) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)
\(=\frac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2x-2\sqrt{x}-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b) Với x = 4 thỏa mãn ĐKXĐ
\(A=\frac{2\sqrt{4}-1}{\sqrt{4}+1}=\frac{4-1}{2+1}=\frac{3}{3}=1\)
c) Chưa nghĩ ra :<
a, Cho x,y,z >0 thỏa điều kiện x+y+z=3. Tìm GTNN của A=\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\)
b, cho x >1 , y>1. Tìm GTNN của A=\(\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3
MInA=3<=>x=y=z=1
b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)
Cho biểu thức: \(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]\) \(:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\) \(\left(x>0,y>0\right)\)
a, Rút gọn A
b,Biết \(xy=16\) . Tìm các giá trị của xy để A có GTNN. Tìm GTNN đó.
chịu thua vô điều kiện xin lỗi nha : v
muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v
\(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y.\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
\(\Leftrightarrow A=\left[\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}.\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{x+y}{xy}\right]:\frac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{xy}\left(x+y\right)}\)
\(\Leftrightarrow A=\frac{2\sqrt{xy}+x+y}{xy}:\frac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{xy}\left(x+y\right)}\)
\(\Leftrightarrow A=\frac{\sqrt{xy}\left(x+y\right)}{xy\left(\sqrt{x}+\sqrt{y}\right)}\)
\(\Leftrightarrow A=\frac{\left(x+y\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\)
sai sót chỗ nào chỉ cho mk nhé. ý kia chốc nx làm nốt
Cho \(A=\sqrt{x+2}+\frac{3}{11};B=\frac{5}{17}-3\sqrt{x-5}\)
a) Tìm GTNN của A
b) Tìm GTLN của B
a. Ta có : Căn bậc hai của x+2 luôn >_0 vs mọi x
→ A>_ 0+3/11 =3/11
Dấu "= " xảy ra <=> x+2= 0 <=> x=-2
b . tương tự nha chỉ có điều là _< thôi