Tính các góc của một tam giác vuông biết tỉ số giữa các bán kính của đường tròn ngoại tiếp và đường tròn nội tiếp bằng (căn bậc hai của
Tỉ số giữa bán kính của đường tròn ngoại tiếp và bán kính của đường tròn nội tiếp tam giác vuông có góc nhọn bằng \(30^0\) là
Gọi cạnh huyền là a, cạnh đối diện góc 300 là c, cạnh còn lại là b
Tính được \(b=c.\cot30=c\sqrt{3}\) nên \(a=\sqrt{b^2+c^2}=\sqrt{\left(c\sqrt{3}\right)^2+c^2}=2c\)
Bán kính đường tròn ngoại tiếp là R = a/2 = 2c/2 = c
Bán kính đường tròn nội tiếp là
\(r=\frac{S}{p}=\frac{bc}{2p}=\frac{bc}{a+b+c}=\frac{c^2\sqrt{3}}{2c+c\sqrt{3}+c}=\frac{c^2\sqrt{3}}{\left(3+\sqrt{3}\right)c}=\frac{\left(\sqrt{3}-1\right)c}{2}\)
Do đó \(\frac{R}{r}=c.\frac{2}{\left(\sqrt{3}-1\right)c}=1+\sqrt{3}\)
bạn thi vio à kết bạn vs mk nhé
1/cho các góc của lục giác ABCDEF bằng 120 độ tính DE và AF biết AB=3,BC=4,EF=1
2/ cho tam giac vuông ABC tỉ số bán kính đường tròn nội tiếp và bán kính đường tròn ngoại tiếp là 2/5 tính tỉ số 2 cạnh góc vuông
Tỉ số giữa bán kính của đường tròn ngoại tiếp và bán kính đường tròn nội tiếp tam giác vuông có góc nhọn bằng 300 là:
nhanh nhé mk cần gấp
BC2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
=RBC.32" role="presentation" style="border:0px; direction:ltr; display:inline-table; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
AB+AC−BC2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
=⇒Rr=BC2.4BC(3−1)=23−1" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
=1+3" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
Tính tỉ số giữa bán kính đường tròn ngoại tiếp và bán kính đường tròn nội tiếp tam giác vuông có một góc nhọn = \(30^o\)
cho tam giác abc vuông tại a, ab =24. Tính các cạnh AC,BC biết tỉ số giữa bán kính đường tròn nội tiếp và ngoại tiếp bằng 2:5
Tính các cạnh của một tam giác cân biết bán kính của đường tròn nội tiếp bằng 6cm, bán kính của đường tròn ngoại tiếp bằng 12,5cm.
Cho R, r lần lượt là bán kính đường tròn ngoại tiếp, đường tròn nội tiếp của một tam giác vuông cân. Tìm tỉ số giữa R và r.
một tam giác cân có cạnh đáy 16cm, cạnh bên 10cm. Tính độ dài các bán kính đường tròn nội tiếp, ngoại tiếp tam giác và khoảng cách giữa các tâm của hai đường tròn đó
Tính tỉ số bán kính đường tròn nội tiếp và đường tròn ngoại tiếp
của một tam giác vuông có một góc là 30 độ ( Viết kết quả dưới dạng phân số tối giản )
Tính độ dài các cạnh của một tam giác vuông biết tỉ số giữa đường tròn ngoại tiếp và đường tròn nội tiếp tam giác này là \(\sqrt{3}+1\)
Gọi a là cạnh huyền, b và c là các cạnh góc vuông ( giả sử b > c ) R và r là các bán kính của6 đường tròn ngoại tiếp và nội tiếp. Ta có :
\(a=2R\left(1\right)\)
\(\frac{R}{r}=\sqrt{3}+1\left(2\right)\)
\(b^2+c^2=a^2\left(3\right)\)
\(b+c-a=2r\left(4\right)\)
Cần tính \(sinB=\frac{b}{a},sinC=\frac{c}{a}\)do đó \(\frac{b}{a}-m,\frac{c}{a}-n\)