Giải phương trình sau:
Cos2\(\frac{x}{2}\) + 2Sin\(\frac{x}{2}\) + 2 = 0
Giải phương trình sau: sin2 x + sin2x - 2 cos2 x = 1/2
+ Xét cos x = 0 ⇒ sin2x = 1 – cos2x = 1
(1) trở thành 1 = 0 (Vô lý).
+ Xét cos x ≠ 0, chia cả hai vế cho cos2x ta được:
Vậy phương trình có tập nghiệm
(k ∈ Z)
giải các phương trình sau : a). sin 2x+sin2 x=1/2
b.2sin2 x +3 sin x cosx + cos2 x= 0
c.sin2 x/2 + sin x - 2 cos 2 x/2 = 1/2
Giải phương trình sau: 3sin2 x – 4 sinx.cosx + 5 cos2 x =2
3sin2x – 4sinx.cosx + 5cos2x = 2
⇔ 3sin2x – 4sinx.cosx + 5cos2x = 2(sin2x + cos2x)
⇔ sin2x – 4sinx.cosx + 3 cos2x = 0 (1)
+ Xét cosx = 0 ⇒ sin2x = 1.
Phương trình (1) trở thành 1 = 0 (Vô lý).
+ Xét cos x ≠ 0. Chia hai vế phương trình cho cos2x ta được
Vậy phương trình có tập nghiệm
(k ∈ Z)
Giải phương trình:\(2sin^2\dfrac{x}{2}-3cos\dfrac{x}{4}=0\)
Đặt \(\dfrac{x}{4}=t\)
\(2sin^22t-3cost=0\)
\(\Leftrightarrow8sin^2t.cos^2t-3cost=0\)
\(\Leftrightarrow8cos^2t\left(1-cos^2t\right)-3cost=0\)
\(\Leftrightarrow-8cos^4t+8cos^2t-3cost=0\)
\(\Leftrightarrow-cost\left(8cos^3t-8cost+3\right)=0\)
\(\Leftrightarrow cost\left(2cost-1\right)\left(4cos^2t+2cost-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cost=0\\cost=\dfrac{1}{2}\\cost=\dfrac{-1+\sqrt{13}}{4}\\cost=\dfrac{-1-\sqrt{13}}{4}< -1\left(loại\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
Giải phương trình:
\(2sin^2\dfrac{x}{2}-3cos\dfrac{x}{4}=0\)
\(\Leftrightarrow2cos2x.cos\left(\dfrac{\pi}{6}\right)-2sin2x.sin\left(\dfrac{\pi}{6}\right)+2sin2x-1=0\)
\(\Leftrightarrow\sqrt{3}cos2x+sin2x=1\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}cos2x+\dfrac{1}{2}sin2x=\dfrac{1}{2}\)
\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
Giải phương trình sau: \(\frac{1}{x+1}+\frac{4}{x+4}-\frac{2}{x+2}-\frac{3}{x+3}=0\)
Giải phương trình sau \(20\left(\frac{x-2}{x+1}\right)^2-5.\left(\frac{x+2}{x-1}\right)^2+48.\frac{x^2-4}{x^2-1}=0\)0
Giải phương trình sau
\(\frac{x-1}{x-2}+\frac{x-2}{x-1}-\frac{x^2}{\left(x-1\right)\left(x-1\right)}=0\) 0
Giải phương trình sau :
\(\frac{4}{x^2}+\frac{x^2}{4-x^2}+\frac{5}{2}\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)+2=0\)
\(pt\Leftrightarrow\left(\frac{4}{x^2}+\frac{x^2}{4-x^2}\right)+\frac{5}{2}\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)+2=0\)
\(\Leftrightarrow\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)^2-1+\frac{5}{2}\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)+2=0\)
Đặt \(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}=t\)pt thành
\(t^2-1+\frac{5}{2}t+2=0\)\(\Rightarrow\orbr{\begin{cases}t=-2\\t=-\frac{1}{2}\end{cases}}\)(loại)
-->PT vô nghiệm
Thắng Nguyễn \(\frac{4}{x^2}\) . T làm ra r , you k cần làm nữa đâu , thanks :))