Nguyên lí Dirichlet??
Nêu khái niệm nguyên lí Dirichlet và lấy ví dụ cụ thể minh chứng cho điều đó ?
Nguyên lí Dirichlet chỉ ra rằng: Nếu có một lượng n vật thể bỏ vào m hộp với điều kiện là n>m thì sẽ có ít nhất một hộp có nhiều hơn 2 vật thể.
Ví dụ: Có ba con chim bồ câu được bỏ vào hai chiếc lồng, vậy thì mỗi lồng có 1 con chim bồ câu, con flaij 1 con chim bồ câu. Nếu để con chim bồ câu còn lại 1 trong 2 chiếc lồng thì sẽ có ít nhất 1 lồng có 2 con chim bồ câu.
Định lí Dirichlet là gì? Nêu tính bao quát? Trên thực tê người ta dùng Định lí Dirichlet để làm gì?
bạn à đây là tiếng anh ko phải là toán!
Cho 65 số tự nhiên bất kì. Chứng minh luôn tìm được 9 số có tổng chia hết cho 9. Giải theo nguyên lí Dirichlet nha
Trong tam giác đều có cạnh bằng 4. Lay 17 điểm Cmr trong 17 điểm đó co ít nhất 2 điểm mà khoảng cách giữa chúng ko vượ quá 1 ( Gợi ý: Sử dụng nguyên lí Dirichlet )
Bạn nào nhanh mình tick 😊😀😀
Chia tam giác đó thành 16 tam giác đều bằng nhau cạnh 1/4. Theo Dirichlet tồn tại 2 điểm cùng thuộc 1 tam giác và khoảng cách giữa chúng không lớn hơn 1/4 .
Khen mình đi !!!
Nguyên lý Dirichlet là gì?
Google hoặc cốc cốc mà tra đỡ mất thời gian hơn đó bn
(Lần đầu tiên nguyên lí Dirichlet được sử dụng trong chứng minh bất đẳng thức!)
Cho \(a,b,c\ge0\). Chứng minh: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)
\(BDT\Leftrightarrow a^2+b^2+c^2+2abc+1-2\left(ab+bc+ca\right)\ge0\)
\(\Rightarrow\left(a-b\right)^2+\left(c-1\right)^2+2c\left(a-1\right)\left(b-1\right)\ge0\)
Từ đây ta thấy trong 3 số a,b,c sẽ có 2 số hoặc cùng \(\ge1\) hoặc cùng \(\le1\).giả sử 2 số đó là a và b suy ra \(\left(a-1\right)\left(b-1\right)\ge0\)
Vậy BĐT đầu luôn đúng
Thích Dirichlet thì chơi Dirichlet
Theo nguyên lý Dirichlet thì trong ba số (a - 1); (b - 1); (c - 1) luôn tồn tại ít nhất 2 số cùng dấu.
Không mất tính tổng quát ta giả sử hai số đó là (a - 1) và (b - 1).
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)
\(\Leftrightarrow2c\left(a-1\right)\left(b-1\right)\ge0\)
\(\Leftrightarrow2abc\ge2\left(ac+bc-c\right)\)
Giờ ta cần chứng minh
\(a^2+b^2+c^2+2\left(ac+bc-c\right)+1\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a-b\right)^2+\left(c-1\right)^2\ge0\)
Dấu = xảy ra khi a = b = c = 1
Em có cách biến đổi tương đương nhưng không đẹp lắm:(
W.L.O.G: \(c=min\left\{a,b,c\right\}\)
\(VT-VP=\left(c-1\right)^2+2c\left(\sqrt{ab}-1\right)^2+\left(\sqrt{a}-\sqrt{b}\right)^2\left(a+b+2\sqrt{ab}-2c\right)\ge0\)
Ta có đpcm.
Trong 45 học sinh làm bài kiểm tra không có ai bị điểm dưới 2 và chỉ có 2 học sinh được điểm 10. Chứng minh rằng cũng tìm được 6 học sinh có điểm kiểm tra bằng nhau ( điểm kiểm tra là 1 số tự nhiên từ 1 đến 10 ).
+) Sử dụng nguyên lí Dirichlet
Số học sinh có điểm kiểm tra từ 2 đến 9 là : 45 - 2 =43.
Ta có : 43 = 8.5 +3.
Như vậy, khi phân chia 43 học sinh vào 8 loại điểm kiểm tra ( từ 2 đến 9 ) thì theo nguyên lí Dirichlet luôn tồn tại ít nhất 5 + 1 =6 học sinh có điểm kiểm tra giống nhau (đpcm).
*sử dụng nguyên lí Dirichlet nha:]*
Cho a,b,c là các số thực dương thỏa mãn abc = 1. Chứng minh rằng :
\(\frac{a+3}{\left(a+1\right)^2}+\frac{b+3}{\left(b+1\right)^2}+\frac{c+3}{\left(c+1\right)^2}\ge3\)
Có 9 học sinh vừa lớp A vừa lớp B xếp thành 1 hàng dọc, đứng cách đều nhau. Chứng minh rằng có ít nhất một học sinh đứng cách hai bạn cùng lớp với mình một khoảng cách như nhau.
Cho mk hỏi có thể giải bài này bằng nguyên lí Dirichlet đc k? Nêu có có thể trình bày cách giải cho mk đc k? Mk cảm ơn trước!!
Đánh dấu số h/s đó lần lượt là: a1,a2,....a9
Giả sử: a5 là học sinh lớp B
=>a4,a6 không thể cùng là học sinh lớp B
Th1:a4,a6 cùng thuộc lớp A khi đó a2,a6 cách đều a4.
a4,a8 cách đều a6 và a8 thuộc lớp B nên hiển nhiên a5 sẽ cách đều a2 và a8 (trái với giả thuyết)
Th2:a4 ,a6 cùng thuộc một lớp khác nhau.
Kmttq giả sử: a4 lớp A,a6 lớp B
Do a4 cách đều a3,a5 nên a4 thuộc lớp B. Do a6 cách đều a3 và a9 nên a9 thuộc lớp A.a5 cách đều a1 và a9 nên a1 thuộc lớp B....
tương tự như vậy hiển nhiên có:a7 đứng cách đều hai bạn cùng lớp A là a5,a9.(trái với giả thuyết)
Vậy có ít nhất một học sinh đứng cách hai bạn cùng lớp với mình một khoảng cách như nhau (đpcm)
Mk hỏi là giải theo nguyên lí Dirichlet đc k