Tìm giá trị nhỏ nhất của biểu thức :
B= 4x^2 +5x+7
tìm x sao cho giá trị biểu thức 2-5x không nhỏ hơn giá trị biểu thức 3(2-x)
tìm x sao cho giá trị của biểu thức-4x+3 không vượt quá giá trị của biểu thức : 5x-7
>_ là lớn hơn hoặc bằng nha do bị lỗi chính tả
_< là bé hơn hoặc bằng
A,
2-5x >_ 3(2-x)
⇔ 2-5x >_ 6-3x
⇔ -5x+3x >_ 6-2
⇔ -2x >_ 3
⇔ x _< \(\dfrac{-3}{2}\)
Tập nghiệm { x / x _< \(\dfrac{-3}{2}\)}
B,
-4x + 3 _< 5x - 7
⇔ -4x - 5x _< -7 - 3
⇔ -9x _< -10
⇔ x >_ \(\dfrac{10}{9}\)
Tập nghiệm { x / x >_ \(\dfrac{10}{9}\) }
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
tìm giá trị nhỏ nhất của biểu thức
5x^2-4xy+y^2+4x+7
\(5x^2-4xy+y^2+4x+7=\left(4x^2-4xy+y^2\right)+\left(x^2+4x+4\right)+3=\left(2x-y\right)^2+\left(x+2\right)^2+3\ge3\)
Dấu = xảy ra khi x = -2 và y = -4
\(A=-5x^2-4x+7\)
\(\Leftrightarrow-5A=25x^2+20x-35\)
\(\Leftrightarrow-5A=\left(25x^2+20x+4\right)-39\)
\(\Leftrightarrow-5A=\left(5x+2\right)^2-39\)
Ta có:
\(\left(5x+2\right)^2-39\ge39\Rightarrow A\le\frac{-39}{5}\)
Dấu '' = '' xảy ra khi: \(x=\frac{-2}{5}\)
giá trị nhỏ nhất của biểu thức A= 7-4x/5x-10 (x thuộc Z, x khác 2)
\(A=\dfrac{-4x+7}{5x-10}=\dfrac{1}{5}\cdot\dfrac{-20x+35}{5x-10}\)
\(=\dfrac{1}{5}\cdot\dfrac{-20x+40-5}{5x-10}\)
\(=\dfrac{1}{5}\cdot\left(-4-\dfrac{5}{5x-10}\right)\)
\(=\dfrac{1}{5}\cdot\left(-4-\dfrac{1}{x-2}\right)\)
A min khi x-2=1
=>x=3
Giúp mình với!
1. Tìm giá trị nhỏ nhất của biểu thức: 3x2-5x+4
2. Tìm giá trị lớn nhất của biểu thức:
a.x-x2+1
b.4x-3x2+2
1, \(3x^2-5x+4\)
\(=3\left(x^2-\frac{5}{3}x\right)+1=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)+\frac{23}{12}=3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\)
Ta có: \(3\left(x-\frac{5}{6}\right)^2\ge0\forall x\Leftrightarrow3\left(x-\frac{5}{6}\right)^2+\frac{23}{12}\ge\frac{23}{12}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{5}{6}\right)^2=0\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
Vậy minA = \(\frac{23}{12}\Leftrightarrow x=\frac{5}{6}\)
2, Bạn thử kiểm tra lại đề bài xem
Tìm giá trị nhỏ nhất của biểu thức \(B=5x^2+10y^2-6xy-4x-2y+3\)
bạn xem lại đề đi, sao lại có 5x^2+10x^2 , sao không viết thành 15x^2 luôn chứ
a) Tìm giá trị nhỏ nhất của biểu thức
A= x2 +5x +7
b) Tìn giá trị lớn nhất của biểu thức
B=6x-x2-5
a,A=x^2+2.x.5/2+25/4+3/4
=(x+5/2)2+3/4
nx:(x+5/2)^2 luôn> hoặc = 0 nên (x+5/2)^2+3/4 >hoặc =3/4
vậy GTNN của A là 3/4
b,B=6x-x2-5
= - (x2-6x+5)
= - (x2-2.x.3+9-4)
=-[(x-3)2-4]
=-(x-3)^2+4
nx; -(x-3)^2 luôn nhỏ hơn hoặc bằng 0 nên -(x-3)^2 +4 luôn < hoặc= 4
Vậy GTLN của B là 4
a, Tìm giá trị lớn nhất của biểu thức: A=4x-x^2+3
b. Tìm giá trị nhỏ nhất của biểu thức:B=4x^2-12x+15
c,Tìm giá trị nhỏ nhất của biểu thức:C=4x^2+2y^2-4xy-4y+1
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
bài :
a, tìm giá trị nhỏ nhất của biểu thức
A=x\(^2\)=5x=7
b< tìm giá trị lớn nhất của biểu thức
B=6x-x\(^2\)-5