Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thành piccolo
Xem chi tiết
Hoàng Minh Đức
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Trần Trung Nguyên
26 tháng 12 2018 lúc 20:38

Ta có \(x^2+y^2+z^2=6\Leftrightarrow\left(x+y+z\right)^2-2\left(xy+xz+yz\right)=6\Leftrightarrow2^2-2\left(xy+xz+yz\right)=6\Leftrightarrow xy+xz+yz=-1\)

Ta lại có \(x^3+y^3+z^3=8\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)+3xyz=8\Leftrightarrow2\left[6-\left(-1\right)\right]+3xyz=8\Leftrightarrow3xyz=-6\Leftrightarrow xyz=-2\)

Vậy ta sẽ có hệ phương trình mới

\(\left\{{}\begin{matrix}x+y+z=2\\xy+xz+yz=-1\\xyz=-2\end{matrix}\right.\)

Coi x,y,z là nghiệm x1,x2,x3 của một phương trình bậc 3, theo công thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2+x_3=2\\x_1x_2+x_1x_3+x_2x_3=-1\\x_1x_2x_3=-2\end{matrix}\right.\)

Suy ra x1,x2,x3 là ba nghiệm của 1 phương trình

\(x^3-2x^2-x+2=0\Leftrightarrow\left(x-2\right)\left(x^2-1\right)=0\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=2\\x=-1\end{matrix}\right.\)

Vì x;y;z có vai trò như nhau trong hệ phương trình nên hệ phương trình đã cho có 6 nghiệm (x;y;z) là: (1;2;-1);(1;-1;2);(2;1;-1);(2;-1;1);(-1;2;1);(-1;1;2)

Nhi Nguyễn
Xem chi tiết
Khương Vũ Phương Anh
Xem chi tiết
Nguyễn Tường Vy
Xem chi tiết
Vũ Huy Hoàng
22 tháng 7 2019 lúc 21:01

(x + y + z)2 = x2 + y2 + z2 + 2(xy + yz +zx) = 1

⇔ xy + yz + zx = 0

(x + y + z)3 = x3 + y3 + z3 + 3(x + y)(y + z)(z + x) = 1

⇔ Trong 3 số x, y, z có hai số đối nhau. Giả sử hai số đó là x, y

⇔ xy + z(x + y)=0

⇔ x = y = 0; z = 1

Vậy (x;y;z)=(0;0;1) và các hoán vị.

Thành Trương
Xem chi tiết
Thành Trương
12 tháng 6 2018 lúc 17:06

@Akai Haruma

Thành Trương
12 tháng 6 2018 lúc 17:21

@Hắc Hường

Aki Tsuki
12 tháng 6 2018 lúc 17:51

III.

Bài 1:

1/ pt có nghiệm x = 1

<=> \(1-m+1-m^2+m-2=0\Leftrightarrow-m^2=0\Leftrightarrow m=0\)

b/ khi m = 2

pt <=> \(x^2-x-4+2-2=0\)

<=> \(x^2-x-4=0\)

Có: \(\Delta=1-4\cdot\left(-4\right)=17\)

\(\Rightarrow\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{17}}{2}\\x_2=\dfrac{1-\sqrt{17}}{2}\end{matrix}\right.\)

Bài 2:

\(\left\{{}\begin{matrix}3x+4y=7\\4x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+4y=7\\y=4x-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+4\left(4x-3\right)=7\\y=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19x=19\\y=4x-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=4\cdot1-3=1\end{matrix}\right.\)

Vậy (x;y) = (1;1)

Hoàng Phúc
Xem chi tiết
Ben 10
11 tháng 8 2017 lúc 21:22

Hệ { x^3 + y^3 + z^3 = 3 
{ x + y + z = 3 
Ta có : x + y + z = 3 
<=> x + y = 3 - z 
<=> (x + y)^3 = (3 - z)^3 
<=> x^3 + 3x^2y + 3xy^2 + y^3 = 27 - 27z + 9z^2 - z^3 
<=> (x^3 + y^3 + z^3) + 3xy(x + y) + 9z(3 - z) = 27 
<=> 3 + 3xy(3 - z) + 9z(3 - z) = 27 
<=> 3xy(3 - z) + 9z(3 - z) = 24 
<=> (3 - z)(xy + 3z) = 8 (*) 
Vì x,y,z nguyên nên (*) tương tương với các hệ sau: 
{ 3 - z = 8 => z = - 5 => x + y = 3 - z = 8 
{ xy + 3z = 1 => xy = 1 - 3z = 16 
=> x, y là nghiệm của pt: t^2 - 8t +16 = 0 <=> (t - 4)^2 = 0 <=> x = y = 4 
{ 3 - z = - 8 => z = 11 => x + y = 3 - z = -8 
{ xy + 3z = -1 => xy = - 1 - 3z = - 34 
=> x, y là nghiệm của pt: t^2 + 8t - 34 = 0 => loại vì x, y không nguyên 
{ 3 - z = 4 => z = -1 => x + y = 3 - z = 4 
{ xy + 3z = 2 => xy = 2 - 3z = 5 
=> x, y là nghiệm của pt: t^2 - 4t + 5 = 0 => vô nghiệm 
{ 3 - z = - 4 => z = 7 => x + y = 3 - z = - 4 
{ xy + 3z = - 2 => xy = - 2 - 3z = -23 
=> x, y là nghiệm của pt: t^2 + 4t - 23 = 0 => loại vì x, y không nguyên 
{ 3 - z = 2 => z = 1 => x + y = 3 - z = 2 
{ xy + 3z = 4 => xy = 4 - 3z = 1 
=> x, y là nghiệm của pt: t^2 - 2t +1 = 0 => x = y = 1 
{ 3 - z = - 2 => z = 5 => x + y = 3 - z = - 2 
{ xy + 3z = - 4 => xy = - 4 - 3z = - 19 
=> x, y là nghiệm của pt: t^2 + 2t -19 = 0 => loại vì x, y không nguyên 
{ 3 - z = 1 => z = 2 => x + y = 3 - z = 1 
{ xy + 3z = 8 => xy = 8 - 3z = 2 
=> x, y là nghiệm của pt: t^2 - t + 2 = 0 => vô nghiệm 
{ 3 - z = - 1 => z = 4 => x + y = 3 - z = -1 
{ xy + 3z = - 8 => xy = - 8 - 3z = - 20 
=> x, y là nghiệm của pt: t^2 + t - 20 = 0 => x = - 5; y = 4 hoặc x = 4; y = -5 
Kết luận: Vậy tập nghiệm nguyên của hệ là S ={(x,y,z)} = {(1,1,1);(4,4,-5);(-5,4,4);(4,-5,4)}

Bá đạo sever là tao
11 tháng 8 2017 lúc 21:23

trc nhìn đề xong copier đã hành động xong rồi, mà copy ko nhìn hả bn ei :v

Hoàng Phúc
12 tháng 8 2017 lúc 19:57

chúng nó copy cần biết đúng sai j , nói chi cho mệt ra <(") <(") 

T H Y K
Xem chi tiết