Tìm GTNN của A =\(\sqrt{x-1+2}\)
Tìm GTLN của B = -\(\sqrt{x+1+5}\)
Mình cần gấp!
Bài 1: Tìm GTNN và GTLN của \(A=123+\sqrt{-x^2+6x+5}\)
Bài 2:Tìm GTNN và GTLN của \(A=\sqrt{-x^2+8x-12}-7\)
Bài 3: Tìm GTNN và GTLN của \(A=\sqrt{-x^2-x+4}\)
Tìm GTNN của
\(A=\sqrt{4x^2+4x+1}+\sqrt{9x^2-12x+4}\)
\(B=\sqrt{a+3-4\sqrt{a-1}}+\sqrt{a+15-8\sqrt{a-1}}\)
\(C=2x+\sqrt{4-2x^2}\)
Tìm GTLN của
\(D=2x+\sqrt{4-x^2}\)
\(E=\frac{\sqrt{x-1}}{x}\)
\(F=\left(a+x\right)\sqrt{a^2-x^2}\left(0\le x\le a\right)\)
MÌNH CẦN GẤP LẮM GIÚP MÌNH VỚI
a, Giả sử (x;y) là các số thực thỏa mãn : \(\left(x+\sqrt{3+x^2}\right)\left(y+\sqrt{3+y^2}\right)=9\) .Tìm GTNN của \(P=x^2+xy+y^2\)
b, Tìm GTNN, GTLN của biểu thức: \(P=\sqrt[4]{1+x}+\sqrt[4]{1-x}+\sqrt[4]{1-x^2}\)
Mình đang rất cần nên các bạn giúp mình với nha!
Theo đề bài, ta có:
x3+y3=x2−xy+y2x3+y3=x2−xy+y2
hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0
⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1
+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52
+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4
Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3
Tìm GTLN và GTNN của A= 3\(\sqrt{x-1}+4\sqrt{5-x}\) với 1≤x≤5
\(A\le\sqrt{\left(3^2+4^2\right)\left(x-1\right)\left(5-x\right)}=10\)
\(A_{max}=10\) khi \(\dfrac{\sqrt{x-1}}{3}=\dfrac{\sqrt{5-x}}{4}\Rightarrow x=\dfrac{61}{25}\)
\(A=3\left(\sqrt{x-1}+\sqrt{5-x}\right)+\sqrt{5-x}\ge3\left(\sqrt{x-1}+\sqrt{5-x}\right)\ge3\sqrt{x-1+5-x}=6\)
\(A_{min}=6\) khi \(x=5\)
Tìm GTLN GTNN của biểu thức
M=
\(\frac{1}{3-\sqrt{1-X^2}}\)
Giúp mình với mình đang cần gấp
Tìm GTNN của:
a)\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b)\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
Tìm GTLN của:
\(\dfrac{1}{\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}}\)
1:
a: \(A=\dfrac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\dfrac{2}{\sqrt{x}+1}\)
căn x+1>=1
=>2/căn x+1<=2
=>-2/căn x+1>=-2
=>A>=-2+1=-1
Dấu = xảy ra khi x=0
b:
Bài 1: Tìm GTLN và GTNN của
a) A= \(\frac{3}{1+2\sqrt{3-x^2}}\)
b) B= \(\sqrt{9+4x-x^2}\)
Bài 2: Tìm GTLN của
a) C= \(\sqrt{x}+x\)
b) C= \(x+\sqrt{3-x}\)
Bài 3: Tìm GTNN của
a) E= \(x-\sqrt{x-2015}\)
b) F= \(\sqrt{x^2-4x+4}+\sqrt{x^2+10x+25}\)
Mọi người giúp mình với. Mình cảm ơn trước ạ!
Tìm GTNN và GTLN của
a,\(A=\frac{1}{5+2\sqrt{6-x^2}}\)
b, \(B=\sqrt{-x^2+2x+4}\)
Giúp mik với ạ , câu nào cũng đc, mình rất cần ạ
Xin cảm ơn
a/ \(A=\frac{1}{5+2\sqrt{6-x^2}}\)
Có: \(-x^2\le0\)với mọi x
=> \(6-x^2\le6\)
=> \(0\le\sqrt{6-x^2}\le\sqrt{6}\)
=> \(5\le5+2\sqrt{6-x^2}\le5+2\sqrt{6}\)
=> \(\frac{1}{5+2\sqrt{6}}\le\frac{1}{5+2\sqrt{6-x^2}}\le\frac{1}{5}\); với mọi x
=> \(\hept{\begin{cases}maxA=\frac{1}{5}\Leftrightarrow\sqrt{6-x^2}=0\Leftrightarrow x=\pm\sqrt{6}\\minA=\frac{1}{5+2\sqrt{6}}\Leftrightarrow\sqrt{6-x^2}=\sqrt{6}\Leftrightarrow x=0\end{cases}}\)
Vậy:...
b/ \(B=\sqrt{-x^2+2x+4}=\sqrt{-\left(x-1\right)^2+5}\)
Có: \(-\left(x-1\right)^2\le0\)với mọi x
=> \(-\left(x-1\right)^2+5\le5\)
=> \(0\le\sqrt{-\left(x-1\right)^2+5}\le\sqrt{5}\)
=> \(0\le B\le\sqrt{5}\)với mọi x
=> \(\hept{\begin{cases}maxB=\sqrt{5}\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x=1\\minB=0\Leftrightarrow\left(x-1\right)^2=5\Leftrightarrow x=\pm\sqrt{5}+1\end{cases}}\)
Vậy:...
a)Ta có:
\(0\le2\sqrt{6-x^2}\le2\sqrt{6}\)
\(\Leftrightarrow\frac{1}{5}\ge\frac{1}{5+2\sqrt{6-x^2}}\ge\frac{1}{5+2\sqrt{6}}=5-2\sqrt{6}\)
\(\Rightarrow\hept{\begin{cases}MAX\left(A\right)=\frac{1}{5}\\MIN\left(A\right)=5-2\sqrt{6}\end{cases}}\)Dấu "=" xảy ra khi \(\hept{\begin{cases}x=0\left(MIN\right)\\x=\sqrt{6}\left(MAX\right)\end{cases}}\)
b)Ta có:
\(0\le B=\sqrt{-x^2+2x+4}=\sqrt{5-\left(x-1\right)^2}\le\sqrt{5}\)
\(\Rightarrow\hept{\begin{cases}MAX\left(B\right)=\sqrt{5}\\MIN\left(B\right)=0\end{cases}}\)Dấu "=" xảy ra khi \(x=1\left(MAX\right)\) và \(\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}\left(MIN\right)}\)
Tìm GTNN của \(\sqrt{x^2-x+\frac{13}{2}}+\sqrt{x^2-3x+\frac{5}{2}}\)
Tìm GTLN của B=7x-y khi x^2+y^2=2
Cho \(C=\frac{4\sqrt{x}-7}{x+\sqrt{x}-2}+\frac{2-\sqrt{x}}{\sqrt{x}-1}-\frac{1+2\sqrt{x}}{\sqrt{x}+2}\)
a> Tìm x để C= 1/2
B> Tìm x thuộc Z sao cho C nhận giá trị nguyên
C> Tìm GTLN của C