1. Cho tam giác ABC, góc A=90 độ. BC=10cm. sinB=\(\frac{3}{4}\)
Tính AB, AC, góc B, góc C
1) Cho tam giác ABC vuông tại A có góc B = 60độ, AC = 3cm. Tính BC, AB
2) Cho tam giác ABC vuông tại A có BC = 10cm, góc C = 3cm. Tính góc B, AB, AC
3) Cho tam giác ABC vuông tại A có AB = 4cm, góc B = 50 độ. Tính BC, góc C, AC
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Tính độ dài các cạnh của tam giác ABC, biết:
a) góc A=90 độ ; AB=AC và BC=10cm
b) góc A=90 độ ; BC=15cm và AB/AC=3/4
Cho tam giác ABC có góc A =90 độ, AH vuông góc với BC, AB/AC=3/4 và BC= 10cm Tính AH
Bài 1: Cho hình thang ABCD có 2 cạnh bên AD và Bc bằng nhau, đường chéo AC vuông góc với cạnh bên BC/ Biết rằng AD= 5a. AC = 12a
a) Tính \(\frac{SinB+C\text{os}B}{SinB-CosB}\)
b) Tính chiều cao hình thăng ABCD
Bài 2: Cho tam giác ABC cân tại A, AB=AC=10cm, BC = 16cm. Trên ường cao AH lấy điểm I sao cho Ai = \(\frac{1}{3}AH\). Vẽ tia CX cắt tia BI tại D.
a) Tính các góc tam giác ABC
b) Tính diện tích tứ giác ABCD
Cho tam giác ABC góc A= 90 độ; góc B= 37 độ; BC= 10cm.
a) Giải tam giác vuông.
b) Kẻ AH vuông góc với BC; H thuộc BC; HE vuông góc với AC; E thuộc AC.
c) Tính diện tích AEH?
Cho tam giác ABC vuông tại A, có:
a. AB = 10cm, BC = 17cm. Tính AC, góc B, góc C.
b. AC = 24cm, góc B = 37 độ. Tính góc C, AB và BC.
1, Cho tam giác ABC ( góc A=90 độ). Từ trung điểm I của cạnh AC kẻ đường thẳng vuông góc với cạnh huyền BC tại D. C/m: BD^2-CD^2=AB^2
2, Cho tam giác ABC( góc A=90 độ). phân giác AD, đường cao AH. biết BD=15cm, CD=20cm, tính BH, CH
3, Cho tam giác ABC( góc A=90 độ). AB=12cm, AC=16cm, phân giác AD, đường cao AH. tính HB,HC,HD
4, Cho tam giác ABC( góc A=90 độ) đường cao AH. Tính chu vi tam giác ABC biết AH= 14 cm, HB/HC=1/4
giúp đỡ mình nhé, mình đang cần gấp
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
Bài 1: Cho tam giác MNP vuông tại M, MK là đường cao, MN=6,25cm; NP=10cm.
a, Tính Mk và giải tam giác vuông MKP.
b, Qua P kẻ đường thẳng d vuông góc với MP và cắt MK tại I. Tính PI và độ dài đường phân giác MQ (Q thuộc NP) của góc NMP.
Bài 2: Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. Gọi I,K thứ tự là hình chiếu của H trên AB,AC.
a, Biết BH=2, HC=8. Tính AH, AB, AC.
b, Biết sinB+3cosC=1. Tính tỉ số lượng giác góc B.
c, Chứng minh: \(\frac{1}{^{HI^2}}+\frac{1}{HC^2}=\frac{1}{HK^2}+\frac{1}{HB^2}\)
Bài 3: Cho tam giác ABC có góc A=60 độ, đường cao AH và CK cắt nhau tại I.
a, Chứng minh: CH.CB=CI.CK.
b, Chứng minh: SABC = \(\frac{\sqrt{3}}{4}\).AB.AC
c, Cho góc BAH=x, góc CAH=y. Tính M=sinx.cosy+siny.cosx.
Cho tam giác ABC có góc A bằng 90 độ,AB=6cm,BC=10cm,đường phân giác BM(M thuộc AC).Từ A hạ AH vuông góc BM cắt BC tại điểm K a)Chứng minh: tam giác AMB đồng dạng với tam giác HKB b)Tính AC,AM,BM c)Tính diện tích tam giác BHK d)Chứng minh: AK.BK bằng 2AM.BH