Cho tam giác cân tại A BM,CN là các đường trung tuyến cắt nhau tại E,E là trung điểm của EB,K là trung điểm của EC
a}C/M IK//MN
Tam giác ABC cân tại A. Đường trung tuyến BM và Cn cắt nhau tại G. CMR:
a, BM=CN
b, Tam giác BGN= tam giác CGM
c, AG là đường trung trực của MN
d, MN // BC
e, AB + 2BC> AI + 2BM
f, MN < ( BM + CN)/2
g, AG cắt BC tại I. B là trung điểm của AK, C là trung điểm của AQ, E là trung điểm của KQ. CM : A; I; E thẳng hàng
Mọi người làm hộ em phần e, f, g vs ạ
cho tam giác ABC cân tại A.Trung tuyến BM,CN cắt nhau tại G(MϵAC,NϵAB).Chứng minh:
a)BM=CN
b)▲BMN=▲CGM
c)AG là đường trung trực của MN
d)MN//BC
e)AG giao BC tại I.lấy K,Q sao cho lần lượt là trung điểm của HK và AQ.Gọi E là trung điểm của KQ.Chứng minh K,H,E thẳng hàng
Cho tam giác ABC cân tại A BM,CN là các đường trung tuyến cắt nhau tại E.E là trung điểm của EB,K là trung điểm của EC
a} C/M IK // MN
B1: Cho tam giác ABC , BM và CN là hai đường trung tuyến cắt nhau tại G . Gọi I,K thứ tự là trung điểm của GB và GC a) Cm : MN=IK và MN // IK b) tìm điều kiện của tam giác ABC để tứ giác MNBC là hình thang cân B2: cho hình thang ABCD (AB//CD). Trên cạnh AD lấy 2 điểm M,N sao cho AM=MN=ND. Từ M và N kẻ các đường thẳng // với hai đáy của hình thang và cắt BC theo thứ tự tại P,Q a)cm: BP=PQ=QC b) biết AB = 5cm,NQ =9cm. Tính MP và DC Giúp mình với gấp ạ 1 câu cũng đc :33
Bài 1:
a: Xét ΔABC có
N là trung điểm của AB
M là trung điểm của AC
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC và \(NM=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
I là trung điểm của GB
K là trung điểm của GC
Do đó: IK là đường trung bình của ΔGBC
Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra NM//IK và NM=IK
cho tam giác ABC cân tại A, trung tuyến BM và CN cắt nhau tại I
a)cm tứ giác BNMC là hình thang cân
b)gọi P,K lần lượt là trung điểm của BN và CM, PK cắt BM tại D cắt CN tại E .cm PD=DE=EK
Cho tam giác ABC các đường trung tuyến BM, CN cắt nhau tại G. K là điểm trên BC, đường thẳng qua K song song với CN cắt AB ở D, đường thẳng qua K song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. CM: I là trung điểm của DE
Cho tam giác ABC cân tại A , có BM và CN là 2 đường trung tuyến
a. C/m: tam giác ABM =tam giác CAN
b.C/m: MN// BC
c.BM cắt CN tại K,D là trung điểm của BC. C/m A,K,D thẳng hàng
Cho tam giác ABC có AB < AC. Lấy M thuộc AB, N thuộc AC sao cho BM = CN. Gọi I, K lần lượt là trung điểm của MN và BC. Đường thẳng IK cắt AB, AC tại E, F. CM: Tam giác AEF cân.