tìm m để đường thẳng y=m cắt dồ thị hàm số y= x | x - 2 | tại 1 điểm duy nhất
Tìm m để đường thẳng y= m cắt đồ thị hàm số y = x x - 2 tại điểm một điểm duy nhất.
A. m> 0
B.m< 1
C. m< 0
D. m< 0 hoặc m> 1
Lập bảng biến thiên(hoặc vẽ đồ thị) từ đó ta suy đường thẳng y= m cắt đồ thị hàm số
tại một điểm duy nhất khi và chỉ khi m< 0 hoặc m> 1.
Chọn D.
Bài 1 : Cho hàm số bậc nhất y=(2m-1)x +3m
a. Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ bằng 2
b. Tìm m để đô thị hàm số song song với đường thẳng y = x-1
c. Tìm m để đồ thị hàm số đi qua giao điểm của 2 đường thẳng sau : y= 3x+2-4
d. Tìm m để đô thị hàm số cắt đường thẳng y= 2x+1 tại điểm có hoành độ là -4
e. Tìm m để đô thị hàm số cắt đường thẳng y=3x-5 tại điểm có tung độ là 2
Cho hàm số bậc nhất y=(m+1)x-2 (m khác -1) có đồ thị là đường thẳng (d) a) Vẽ đồ thị hàm số với m=0. b) Tìm m để đường thẳng (d) cắt đường thẳng (d'):y=x+1 tại điểm có hoành độ bằng 1. c) Tim m để đường thẳng (d) cắt Ox, Oy lần lượt tại hai điểm A, B sao cho OAB=45°
b: Thay x=1 vào y=x+1, ta đc:
y=1+1=2
Thay x=1 và y=2 vào (d), ta được;
m+1-2=2
=>m+1=2
=>m=1
c: Tọa độ A là:
y=0 và (m+1)x-2=0
=>x=2/m+1 và y=0
=>OA=2/|m+1|
Tọa độ B là:
x=0 và y=-2
=>OB=2
Để góc OAB=45 độ thì OA=OB
=>|m+1|=1
=>m=0 hoặc m=-2
Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Giả sử (d) luôn đi qua điểm cố định M(x0; y0)
Ta có: \(y_0=\left(m+5\right)x_0+2m-10\)
<=> \(mx_0+5x_0+2m-10-y_0=0\)
<=> \(m\left(x_o+2\right)+5x_0-y_0-10=0\)
Để M cố định thì: \(\hept{\begin{cases}x_0+2=0\\5x_0-y_0-10=0\end{cases}}\) <=> \(\hept{\begin{cases}x_0=-2\\y_0=-20\end{cases}}\)
Vậy...
12, Cho hàm số y=x-1/x^2+mx+4. Tìm m để đồ thị hàm số có 2 đường tiện cận 13, tìm m để(C):y= mx^3-x^2-2x+8m cắt Ox tại 3 điểm phân biệt có Hoành độ âm 14,cho (C) :y= x^3+(m+2) x+1 d:y= 2x-1 Tìm m để d cắt C tại 1 điểm duy nhất có Hoành độ dương 15, tìm m để phương trình -x^4+2x^2+3x+2m=0 có 3 nghiệm phân biệt
a, Tìm hàm số bậc nhất biết đồ thị của nó đi qua điểm A(-1;-5) và có tung độ gốc
bằng -3.
b, Tìm m để đường thẳng y=(m-1)x+m-2 cắt nhau tại 1 điểm trên trục tung
c, Tìm m để đường thẳng y=(m-1)x+m-2 đi qua gốc tọa độ .
d,. Tìm m để đường thẳng y=(m-1)x+m-2 cắt đồ thị hàm số tìm được ở câu a tại điểm có hoành độ -6
Cho hàm số: (d): y=(3-m).x+m+1
a) Tìm m để hàm số là hàm số bậc nhất
b) Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng -2
c) Tìm m để đồ thị hàm số cắt đường thẳng y= -x+4 tại 1 điểm trên trục tung
d) Tìm m để đồ thị hàm số tạo với 2 trục tam giác có diện tích bằng 2
e) Tìm điểm cố định mà đồ thị hàm số luôn qua với mọi m
Cho hàm số bậc nhất y = (2m + 1)x + 3.Tìm m để đồ thị hàm số cắt đường thẳng y = x + 1 tại điểm có tung độ bằng 2?
A. m = 1
B. m = 0
C. m = -1
D. m = 2
Đáp án C
Điều kiện để hàm số đã cho là hàm số bậc nhất là: 2m + 1 ≠ 0 ⇔ m ≠ (-1)/2
* Ta tìm tọa độ điểm A thuộc đường thẳng y= x + 1 có tung độ bằng 2:
⇒ 2 = x + 1 ⇔ x = 1 ⇒ A(1; 2)
* vì đồ thị hàm số y = (2m + 1)x + 3 cắt đường thẳng y = x + 1 tại điểm có tung độ bằng 2 nên đồ thị hàm số y = (2m + 1)x + 3 đi qua A(1;2).
⇒ 2 = (2m + 1).1 + 3 ⇔ 2 = 2m + 4
⇔ -2m = 2 ⇔ m = -1
Cho hàm số bậc nhất \(y=\left(2m-1\right)x-3m+5\) có đồ thị hàm số là đường thẳng (d)
a) Vẽ đồ thị hàm số khi m = 2
b) Tìm m để (d) song song với đường thẳng (\(d_1\)) : \(y=-3x+2\)
c) Tìm m để (d) cắt đường thẳng (\(d_1\)) : \(y=-3x+2\) tại 1 điểm nằm trên trục tung
a) Khi m =2 thì y = 3x - 1
(Bạn tự vẽ tiếp)
b) Để \((d)//(d_{1})\) thì \(\begin{cases} 2m-1=-3\\ -3m+5\neq2 \end{cases} \) ⇔ \(\begin{cases} m=-1\\ m\neq1 \end{cases} \) ⇔ \(m=-1\)
c)
Để \((d) ⋂ (d1)\) thì \(2m-1\neq-3 \) ⇔ \(m\neq-1\)
Giao điểm của 2 đường thẳng thuộc trục tung => x=0
Khi đó, ta có: \(y=-3.0+2=2\)
⇒ Điểm \((0;2)\) cũng thuộc đường thẳng (d)
⇒ \(2=(2m-1).0-3m+5\) ⇔ \(m=1\) (TM)