(-n)^3*3^8=-27
Chứng minh các đẳng thức sau (với n∈N∗n∈N∗)
a) 2+5+8+...+(3n−1)=n(3n+1)22+5+8+...+(3n−1)=n(3n+1)2;
b) 3+9+27+...+3n=12(3n+1−3)3+9+27+...+3n=12(3n+1−3).
tham khảo:
\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)
b, 3n+11⋮n+2
c,n+8⋮n+3
d,2n+3⋮n+1
e,12-n⋮8-n
f,27-5n⋮n+3
b: \(\Leftrightarrow3n+6+5⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{-1;-3;3;-7\right\}\)
c: \(\Leftrightarrow n+3+5⋮n+3\)
\(\Leftrightarrow n+3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{-2;-4;2;-8\right\}\)
d: \(\Leftrightarrow2n+2+1⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
e: \(\Leftrightarrow n-8-4⋮n-8\)
\(\Leftrightarrow n-8\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{9;7;10;6;12;4\right\}\)
b: ⇔3n+6+5⋮n+2⇔3n+6+5⋮n+2
⇔n+2∈{1;−1;5;−5}⇔n+2∈{1;−1;5;−5}
hay n∈{−1;−3;3;−7}n∈{−1;−3;3;−7}
c: ⇔n+3+5⋮n+3⇔n+3+5⋮n+3
⇔n+3∈{1;−1;5;−5}⇔n+3∈{1;−1;5;−5}
hay n∈{−2;−4;2;−8}n∈{−2;−4;2;−8}
d: ⇔2n+2+1⋮n+1
CMR: 2/3+8/9+26/27+...+3^n-1/3^n < n-1/2
e,12-n⋮8-n
f,27-5n⋮n+3
Đề bài không cho điều kiện?
e) \(\left(12-n\right)⋮\left(8-n\right)\)
\(\Rightarrow\left(4+8-n\right)⋮\left(8-n\right)\)
\(\Rightarrow4⋮\left(8-n\right)\)
\(\Rightarrow\left(8-n\right)\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\in\left\{7;9;6;10;4;12\right\}\)
f) \(\left(27-5n\right)⋮\left(n+3\right)\)
\(\Rightarrow\left[\left(27-5n\right)+5\left(n+3\right)\right]⋮\left(n+3\right)\)
\(\Rightarrow42⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(42\right)=\left\{\pm1;\pm2;\pm3;\pm6;\pm7;\pm14;\pm21;\pm42\right\}\)
\(\Rightarrow n\in\left\{-2;-4;-1;-5;0;-6;3;-9;4;-10;11;-17;18;-24;39;-45\right\}\)
cho A = 2/3 + 8/9 + 26/27 +...+ 3^n - 1 / 3^n. chứng minh a > n - 1/2
Cho A=2/3+8/9+26/27+...+3^n -1/3^n. Chứng minh A>n-1/2
cho A=\(\frac{2}{3}+\frac{8}{9}+\frac{26}{27}+...+\frac{3^n-1}{3^n}\)
=> n-A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)
=>\(3\left(n-A\right)\)=\(1\)\(+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{3n-1}}\)
=> \(3\left(n-A\right)-\left(n-A\right)=2\left(n-A\right)=1-\frac{1}{3^n}\)
=>\(2\left(n-A\right)< 1\)
=>\(n-A< \frac{1}{2}\)
=> \(A< n-\frac{1}{2}\)
Deu la tui het do
Sao lại là n-A thế bạn? n đã tìm đc đâu
Tính:
a) 2^5 x 13^12 x 7^8 : 27 x 13^10 x 7^9
b) 2^n x 11 x 3 : 6^n x 3
c) 5^5 x 7 x 9^5 : 15^10
d) 7 x 8^10 x 27^9 - 8 x 9^13 x 2^27 : 7 x 6^26 x 2^2 - 2^4 x 8^3 x 27^9
e) 2^2^1^2015
f) 2015^0^2015^0^2015
a) Tính và so sánh: \(\sqrt[3]{{ - 8}}.\sqrt[3]{{27}}\) và \(\sqrt[3]{{\left( { - 8} \right).27}}.\)
b) Tính và so sánh: \(\frac{{\sqrt[3]{{ - 8}}}}{{\sqrt[3]{{27}}}}\) và \(\sqrt[3]{{\frac{{ - 8}}{{27}}}}.\)
a: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=-2\cdot3=-6\)
\(\sqrt[3]{\left(-8\right)\cdot27}=\sqrt[3]{-216}=-6\)
Do đó: \(\sqrt[3]{-8}\cdot\sqrt[3]{27}=\sqrt[3]{\left(-8\right)\cdot27}\)
b: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=-\dfrac{2}{3}\)
\(\sqrt[3]{-\dfrac{8}{27}}=-\dfrac{2}{3}\)
Do đó: \(\dfrac{\sqrt[3]{-8}}{\sqrt[3]{27}}=\sqrt[3]{-\dfrac{8}{27}}\)
Cho C = 2/3 + 8/9 + 26/27 + ... + 3^n-1/3^n
Chứng ming rằng : C > n - 1/2
\(C=\frac{3-1}{3}+\frac{3^2-1}{3^2}+...+\frac{3^n-1}{3^n}\)
\(=1-\frac{1}{3}+1-\frac{1}{3^2}+...+1-\frac{1}{3^n}\)
\(=1+1+...+1-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\right)\)
\(=n-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\right)=n-D\)
\(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\)
\(3D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\)
\(\Rightarrow2D=1-\frac{1}{3^n}\Rightarrow D=\frac{1}{2}-\frac{1}{2.3^n}\)
\(\Rightarrow C=n-\left(\frac{1}{2}-\frac{1}{2.3^n}\right)=n-\frac{1}{2}+\frac{1}{2.3^n}>n-\frac{1}{2}\)