Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tran Thi Hien Nhi
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 7 2020 lúc 21:36

a) Ta có: \(A=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\cdot\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)

\(=\left(\frac{1-x\sqrt{x}+\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)\cdot\left(\frac{1}{1+\sqrt{x}}\right)^2\)

\(=\frac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{-\left(x-1\right)\left(-1-\sqrt{x}\right)}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{\left(1+\sqrt{x}\right)\cdot\left(-1-\sqrt{x}\right)}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{-1\cdot\left(1+\sqrt{x}\right)^2}{\left(1+\sqrt{x}\right)^2}=-1\)

Nguyễn Minh Phương
Xem chi tiết
nguyen le duy hung
Xem chi tiết
Không Tên
11 tháng 7 2018 lúc 20:04

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)

Nguyễn Mai Quỳnh
Xem chi tiết
ppeachy do
Xem chi tiết
Ngân Vũ Thị
19 tháng 7 2019 lúc 12:45

undefinedundefinedcau c í mk thấy bn chép sai đề nên mk sửa lại đề rồi bạn xem lại đề rồi so với bài làm của mk nha có j ko hiểu thì ib mk nha

Nguyễn Thành Trương
19 tháng 7 2019 lúc 13:40

\(a)VT = \dfrac{{{{\left( {\sqrt a + 1} \right)}^2} - 4\sqrt a }}{{\sqrt a - 1}} + \dfrac{{a + \sqrt a }}{{\sqrt a }}\\ = \dfrac{{a + 2\sqrt a + 1 - 4\sqrt a }}{{\sqrt a - 1}} + \dfrac{{\sqrt a \left( {\sqrt a + 1} \right)}}{{\sqrt a }}\\ = \dfrac{{a - 2\sqrt a + 1}}{{\left( {\sqrt a - 1} \right)}} + \sqrt a + 1\\ = \dfrac{{{{\left( {\sqrt a - 1} \right)}^2}}}{{\sqrt a - 1}} + \sqrt a + 1\\ = \sqrt a - 1 + \sqrt a + 1\\ = 2\sqrt a = VP (đpcm) \)

\(b)VT = \dfrac{{x\sqrt x + y\sqrt y }}{{\sqrt x + \sqrt y }} - {\left( {\sqrt x - \sqrt y } \right)^2}\\ = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\left( {x - \sqrt {xy} + y} \right)}}{{\sqrt x + \sqrt y }} - \left( {x - 2\sqrt {xy} + y} \right)\\ = x - \sqrt {xy} + y - x + 2\sqrt {xy} - y\\ = \sqrt {xy} (đpcm)\\ c)VT = \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}:\dfrac{{a - b}}{{\sqrt a + \sqrt b }}\\ = \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}.\dfrac{{\sqrt a + \sqrt b }}{{a - b}}\\ = \sqrt a - \sqrt b .\dfrac{{\sqrt a + \sqrt b }}{{a - b}}\\ = \dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{a - b}}\\ = \dfrac{{a - b}}{{a - b}} = 1 (đpcm)\\ d)VT = \left[ {\dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^2} + 4\sqrt {ab} }}{{\sqrt a + \sqrt b }} - \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}} \right]:\sqrt b \\ = \dfrac{{a - 2\sqrt {ab} + b + 4\sqrt {ab} }}{{\sqrt a + \sqrt b }} - \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}:\sqrt b \\ = \dfrac{{{{\left( {\sqrt a + \sqrt b } \right)}^2}}}{{\sqrt a + \sqrt b }} - \left( {\sqrt a - \sqrt b } \right):\sqrt b \\ = \sqrt a + \sqrt b - \sqrt a + \sqrt b :\sqrt b \\ = \dfrac{{2\sqrt b }}{{\sqrt b }} = 2 (đpcm) \)

Câu c đề sai (đã sửa)

Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Thị Minh Châu
11 tháng 8 2023 lúc 21:07

loading...loading...

Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 8 2020 lúc 21:42

a) Ta có: \(A=\left(2\sqrt{4+\sqrt{6-2\sqrt{5}}}\right)\cdot\left(\sqrt{10}-\sqrt{2}\right)\)

\(=\left(2\sqrt{4+\sqrt{5-2\cdot\sqrt{5}\cdot1+1}}\right)\cdot\left(\sqrt{10}-\sqrt{2}\right)\)

\(=\left(2\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}\right)\cdot\left(\sqrt{10}-\sqrt{2}\right)\)

\(=\left(2\sqrt{4+\left|\sqrt{5}-1\right|}\right)\cdot\left(\sqrt{10}-\sqrt{2}\right)\)(Vì \(\sqrt{5}>1\))

\(=\left(2\sqrt{4+\sqrt{5}-1}\right)\cdot\sqrt{2}\cdot\left(\sqrt{5}-1\right)\)

\(=2\cdot\sqrt{3+\sqrt{5}}\cdot\sqrt{2}\cdot\left(\sqrt{5}-1\right)\)

\(=2\cdot\left(\sqrt{5}-1\right)\cdot\sqrt{6+2\sqrt{5}}\)

\(=2\cdot\left(\sqrt{5}-1\right)\cdot\sqrt{5+2\cdot\sqrt{5}\cdot1+1}\)

\(=2\cdot\left(\sqrt{5}-1\right)\cdot\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=2\cdot\left(\sqrt{5}-1\right)\cdot\left|\sqrt{5}+1\right|\)

\(=2\cdot\left(\sqrt{5}-1\right)\cdot\left(\sqrt{5}+1\right)\)

\(=2\cdot\left(5-1\right)\)

\(=2\cdot4=8\)

b) Ta có: \(B=\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}+\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\cdot\left(1-\frac{2}{a+1}\right)^2\)

\(=\left(\frac{\left(\sqrt{a}-1\right)^2+\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\cdot\left(\sqrt{a}-1\right)}\right)\cdot\left(\frac{a+1-2}{a+1}\right)^2\)

\(=\frac{a-2\sqrt{a}+1+a+2\sqrt{a}+1}{\left(\sqrt{a}+1\right)\cdot\left(\sqrt{a}-1\right)}\cdot\frac{\left(a-1\right)^2}{\left(a+1\right)^2}\)

\(=\frac{2a+2}{\left(a-1\right)}\cdot\frac{\left(a-1\right)^2}{\left(a+1\right)^2}\)

\(=\frac{2\left(a+1\right)\cdot\left(a-1\right)}{\left(a+1\right)^2}\)

\(=\frac{2a-2}{a+1}\)

Võ Đức Tùng
Xem chi tiết
Lê Thu Dương
8 tháng 8 2019 lúc 10:12

A= (\(\frac{1}{\sqrt{a}-1}\) - \(\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\)) : \(\frac{\sqrt{a}-2}{a+1}\)

<=> (\(\frac{1}{\sqrt{a-1}}\) - \(\frac{2\sqrt{a}}{\left(a\sqrt{a-1}\right)-\sqrt{a}\left(\sqrt{a}-1\right)}\)). \(\frac{a+1}{\sqrt{a}-2}\)

<=> (\(\frac{1}{\sqrt{a}-1}\) - \(\frac{2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1-\sqrt{a}\right)}\)). \(\frac{a+1}{\sqrt{a}-2}\)

<=> (\(\frac{a+1}{\left(\sqrt{a}-1\right)\left(a+1\right)}\).\(\frac{a+1}{\sqrt{a}+2}\)

<=> \(\frac{a+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)

💋Amanda💋
8 tháng 8 2019 lúc 10:14
https://i.imgur.com/hFLvTfY.jpg