rút gọn: a, \(\left(a+b-\frac{2a\sqrt{b}+2b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\) (a, b ≥ 0; a ≠ b)
b, \(\left|x\right|+\frac{\sqrt{x^2}}{x}\) ( x ≠ 0)
\(\left(\frac{3\sqrt{a}}{a+\sqrt{a}+b}-\frac{3a}{a\sqrt{a}-b\sqrt{b}}+\frac{1}{\sqrt{a}-\sqrt{b}}\right):\frac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{\left(2a+2\sqrt{ab}+2b\right)}
\)
a. Rút gọn P
b. Tìm giá trị nguyên của a để giá trị P nguyên
a) P = \(\left(\frac{3\sqrt{a}}{a+\sqrt{a}+b}-\frac{3a}{a\sqrt{a}-b\sqrt{b}}+\frac{1}{\sqrt{a}-\sqrt{b}}\right):\frac{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}{\left(2.a+2.\sqrt{ab}+2.b\right)}\)
= \(\left(\frac{3\sqrt{a}.\left(\sqrt{a}-\sqrt{b}\right)-3.a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right).\left(a+\sqrt{ab}+b\right)}\right).\frac{2.\left(a+\sqrt{ab}+b\right)}{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}\)
= \(\frac{a-2.\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}.\frac{2}{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}\)
= \(\frac{2}{a-1}\)
b) P nguyên <=> \(\frac{2}{a-1}\)nguyên => 2 \(⋮\)a - 1
=> ( a- 1 ) = { \(\pm\)1 ; \(\pm\) 2} => a = { -1 ; 0 ; 2 ;3 }
Rút gọn:
\(B=\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}+\sqrt{b}\right)^3}+2a\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
Ta có:
\(B=\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}+\sqrt{b}\right)^3}+2a\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{\frac{\left(\sqrt{a}+\sqrt{b}\right)^3\left(\sqrt{a}-\sqrt{b}\right)^3}{\left(\sqrt{a}+\sqrt{b}\right)^3}+2a\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^3+2a\sqrt{a}+b\sqrt{b}}{a\sqrt{a}+b\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{3a\sqrt{a}-3a\sqrt{b}+3\sqrt{a}b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}+\frac{3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{3\sqrt{a}\left(a-\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}+\frac{3\left(\sqrt{ab}-b\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{3\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{3\left(\sqrt{ab}-b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{3\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)+3\left(\sqrt{ab}-b\right)}{a-b}\)
\(=\frac{3a-3b}{a-b}\)
\(=3\)
=.= hok tốt!!
Rút gọn biểu thức
\(\left(a+b-\frac{2a\sqrt{b}-2b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
Moinj người giúp em sớm nhất có thể với ạ ? Em cảm ơn :)
\(\left(a+b-\frac{2a\sqrt{b}-2b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\left(a+b-\frac{2\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\left(a+b-2\sqrt{ab}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{a-b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}=1\)
Tìm ĐKXĐ và rút gọn các biểu thức sau:
\(A=\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}\)
\(B=\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)
\(A=\frac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\frac{2b}{b-a}.\)
\(=\frac{\sqrt{a}+\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2b}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)
\(=\frac{4\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)
\(B=\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)
\(=\left(\frac{\sqrt{a}^3+\sqrt{b}^3}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right)^2\)
\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\)\(\left(\frac{1}{\sqrt{a}-\sqrt{b}}\right)^2\)
\(=\left(a-\sqrt{ab}+b-\sqrt{ab}\right).\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
\(=\left(\sqrt{a}-\sqrt{b}\right)^2.\frac{1}{\left(\sqrt{a}-\sqrt{b}\right)^2}=1\)
Rút gọn
a)\(2\sqrt{a}+3a\sqrt{4ab^2}-2b\sqrt{16a^5}-2\sqrt{25a}\)(a>0;b>0)
b)\(\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}\left(a\ge0;b\ge0;a\ne b\right)\)
c)\(\frac{a\sqrt{a}-b\sqrt{b}}{a-b}-\frac{a-b}{\sqrt{a}-\sqrt{b}}\left(a\ge0;b\ge0;a\ne0\right)\)
Cho a>0, b>0, a khác b. Rút gọn
\(\frac{\left(\frac{a-b}{\sqrt{a}+\sqrt{b}}\right)^3+2a\sqrt{a}+b\sqrt{b}}{3a^2+3b\sqrt{ab}}+\frac{\sqrt{ab}-a}{a\sqrt{a}-b\sqrt{a}}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^3+2\sqrt{a^3}+\sqrt{b^3}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)
\(=\frac{\sqrt{a^3}-3a\sqrt{b}+3\sqrt{a}.b-\sqrt{b^3}+2\sqrt{a^3}+\sqrt{b^3}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)
\(=\frac{3\sqrt{a^3}-3a\sqrt{b}+3b\sqrt{a}}{3\sqrt{a}\left(\sqrt{a^3}+\sqrt{b^3}\right)}+\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\sqrt{a}\left(a-b\right)}\)
\(=\frac{a-\sqrt{ab}+b}{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}-\frac{1}{\sqrt{a}+\sqrt{b}}=0\)
Rút gọn : \(\frac{a}{2}.\left(\sqrt[3]{a^2b}+\frac{b}{a^2}.\sqrt{\frac{15a}{b^2}}-\frac{4a}{5b}\sqrt[3]{\frac{b}{2a^2}}\right):\frac{2a^3}{15b^2}.\sqrt{\frac{5a^2}{2b}}\)
3.P=\(\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right)\):\(\left(\dfrac{\left(a-1\right).\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\right)\)
a)Rút gọn P
b)Tìm những giá trị nguyên của a để P có giá trị nguyên
Rút gọn biểu thức
\(\frac{\frac{\left(a-b\right)3}{\left(\sqrt{a}-\sqrt{b}\right)3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}\)