Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất: \(C=x^2+xy+y^2-3x-3y\)
Cho x,y là 2 số thực thỏa mãn x2+xy2+2xy+3x+3y-4=0
Tìm giá trị lớn nhất, giá trị nhỏ nhất của P=x+y
Mọi người giúp mình nha, mình cần gấp ạ
Tìm giá trị nhỏ nhất của biểu thức A=x^2 +xy +y^2 -3x -3y
Tìm giá trị nhỏ nhất của M=3x^2+3y^2+6/xy với x,y cùng giấu
\(3x^2+3y^2\ge6xy\left(Cauchy\right)\Rightarrow3x^2+3y^2+\frac{6}{xy}\ge6xy+\frac{6}{xy}\ge6.2=12\)
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất: \(C=x^2+xy+y^2-3x-3y\)
C không có GTLN, vì nếu ta tiến x, y đến vô cực thì C cũng tiến đến vô cực.
+) Tìm GTNN:
\(4C=4x^2+4xy+4y^2-12x-12y=\left(2x+y-3\right)^2+3\left(y-1\right)^2-12\ge-12\)
\(\Rightarrow C\ge-3\)
Dấu "=" xảy ra khi và chỉ khi y = 1; x = 1.
Vậy...
Tìm giá trị nhỏ nhất của B=\(x^2+y^2-xy-3x-3y+2029\)
\(2B=2x^2+2y^2-2xy-6x-6y+4058\)
\(2B=\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2+4040\ge4040\)
\(\Rightarrow B\ge2020\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=0\\x-3=0\\y-3=0\end{cases}\Leftrightarrow x=y=3}\)
Vậy ....
Tìm giá trị nhỏ nhất của x2 + xy + y2 - 3x - 3y + 2008
Lời giải:
Ta có:
$A=x^2+xy+y^2-3x-3y+2008$
$2A=2x^2+2xy+2y^2-6x-6y+4016$
$=(x^2+2xy+y^2)-4(x+y)+4+ (x^2-2x+1)+(y^2-2y+1)+ 4010$
$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+4010$
$=(x+y-2)^2+(x-1)^2+(y-1)^2+4010\geq 4010$
$\Rightarrow A\geq 2005$
Vậy $A_{\min}=2005$
Giá trị này đạt tại $x+y-2=x-1=y-1=0$
$\Leftrightarrow x=y=1$
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r
Tìm giá trị nhỏ nhất của M=3x2+3y2+ 6/xy với x,y cùng dấu.
tìm giá trị nhỏ nhất của biểu thức
x2+xy+y2-3x-3y