Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất: \(B=x^2-2xy+2y^2+2x-10y+17\)
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y
Sửa đề:
\(C=x^2-4xy+5y^2-10y+6\)
\(C=\left(x^2-4xy+4y^2\right)+\left(y^2-10y+25\right)-19\)
\(C=\left(x-2y\right)^2+\left(y-5\right)^2-19\ge-19\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2y\right)^2=0\\\left(y-5\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2y\\y=5\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
Vậy \(Min_C=-19\Leftrightarrow\hept{\begin{cases}x=10\\y=5\end{cases}}\)
\(D=x^2-2xy+2y^2-2x-10y+20\)
\(D=\left(x-y\right)^2-2\left(x-y\right)+1+\left(y^2-12y+36\right)-17\)
\(D=\left(x-y-1\right)^2+\left(y-6\right)^2-17\ge-17\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y-1\right)^2=0\\\left(y-6\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y+1\\y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
Vậy \(Min_D=-17\Leftrightarrow\hept{\begin{cases}x=7\\y=6\end{cases}}\)
\(E=x^2+2y^2-2xy+2x-10y\)
\(E=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+\left(y^2-8y+16\right)-17\)
\(E=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-4\right)^2-17\)
\(E=\left(x-y+1\right)^2+\left(y-4\right)^2-17\ge-17\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y+1\right)^2=0\\\left(y-4\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y-1\\y=4\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=4\end{cases}}\)
Vậy \(Min_E=-17\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)
Tìm GTLN (Giá trị lớn nhất) hoặc GTNN (Giá trị nhỏ nhất) của :
C = x2 - 4xy + 2y2 - 10y + 6
D = x2 - 2xy + 3y2 - 2x - 10y + 20
E = x2 + 2y2 - 2 xy + 2x -10y
Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất: \(B=x^2-2xy+2y^2+2x-10y+17\)
\(B=\left(x^2+y^2+1-2xy+2x-2y\right)+\left(y^2-8x+16\right)\)
\(B=\left(x-y+1\right)^2+\left(y-4\right)^2\ge0\)
\(B_{min}=0\) khi \(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của:
a, A=x²-2xy+2y²+4x-10y+17
b,B=x²-xy+y²-2x-2y
Tìm giá trị nhỏ nhất của
A) x^2+2y^2-2xy+2x-10y
Ta thấy x2x2 và y2y2 luôn lớn hơn hoặc bằng 0 với mọi x
Nên để A đạt GTNN thì x = 0 và y = 0, do đó A = 0 + 0 - 0 + 0 - 0 = 0
Vậy Min A = 0
Còn cách khác nữa như sau :
Nhập biểu thức vào máy : 2x + 4y - 2xy + 2x - 10y = 0 SHIFT SOLVE
Y? 0 =
Solve for X? 0 =
KQ ra Solve x = 0
Vậy Min A = 0 khi x = 0 và y = 0.
tìm giá trị nhỏ nhất của biểu thức
\(A=x^2-2xy+2y^2+2x-10y+17\)