Cho tam giác ABC kẻ đường cao AH xuống cạch BC, I là điểm bất kỳ trên AH nối BI cắt AC tại P và nối CI cắt AB tại Q. Chứng minh rằng AH là phân giác của góc PHQ.
Cho tam giác ABC, đường cao AH, I là điểm bất kì thuộc AH, BI cắt AC tại Q; CI cắt AB tại P. CM: HA là tia phân giác góc PHQ
Cho tam giác ABC, đường cao AH, I là điểm bất kì thuộc AH, BI cắt AC tại Q; CI cắt AB tại P. CM: HA là tia phân giác góc PHQ
Cho tam giác ABC, đường cao AH, I là điểm bất kì thuộc AH, BI cắt AC tại Q; CI cắt AB tại P. CM: HA là tia phân giác góc PHQ
Cho tam giác ABC nhon, đường cao AH lấy I trên AH. Đường thẳng CI cắt AB tại AB tại P, đường thẳng BI cắt AC tại Q. Chứng minh HA là tia phân giác của PHQ.
HD:Qua A kẻ đường thẳng song song BC cắt HP tại M, và HQ tại N
thôi k cần đâu làm đc r
Cho tam giác ABC, đường cao AH, I là điểm bất kì thuộc AH, BI cắt AC tại Q; CI cắt AB tại P. CM: HA là tia phân giác góc PHQ
Ai giúp mình đi mình tặng 5 tích
1. Cho tam giác AB, tia phân giác của góc B cắt AC tại D. Qua D kẻ tia Dx song song với AB, Dx cắt BC tại M. kẻ tia My là phân giác của góc DMC, Bz là tia phân giác của góc ngoài tại đỉnh B. Chứng minh: Bz vuông góc My.
2. Cho tam giác ABC vuông tại A, đường cao AH, có AB = 12cm, BC = 15cm.
a, Tính AC, AH.
b, So sánh HB và HC.
c, Trên đoạn thẳng HC lấy điểm M bất kỳ. Qua M kẻ đường thẳng song song với AC cắt AH tại D. Chứng minh: BD vuông góc AM
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
Cho tam giác ABC vuông tại A, đường cao AH, HB=9cm; HC=16cm. a) chứng minh : AB^2 = HB.BC b) Tính AB; AC; AH c) Phân giác của góc B cắt AH tại I, từ I kẻ đường thẳng song song với BC cắt AC tại K. Chứng minh AK/KC = AB/HC d) Gọi E là giao điểm của BI với AC chứng minh tam giác KIE đồng dạng với tam giác ABI
a: Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
b: \(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
=>AC=20(cm)
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha
Cho tam giác ABC (AB<AC) nội tiếp đường tròn đường kính BC , đường cao AH . Gọi I là giao điểm các đường phân giác . Tia phân giác góc AHB cắt tia BI tại J , tia phân giác của góc AHC cắt CI tại K . cm tam giác ABC đồng dạng tam giác HJK
Cho (O) đường kính BC , điểm A bất kỳ thuộc (O) : AB<AC. Kẻ dây AD vuông góc với BC , các đường thẳng AC và BDF cắt nhau tại E . Từ E kẻ EH vuông góc với BC tại H . cm khi A di chuyển trên (O) : AB<AC thì HA luôn tiếp xúc với đường tròn cố định
Ai đúng mình cho 4 tick nha