Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Tú Anh
Xem chi tiết
Cilina
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 4 2023 lúc 11:09

loading...  

Ngân
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 4 2023 lúc 20:39

a: Xet ΔABC vuông tại A co AH là đường cao

nên AH^2=HB*HC

b: BC=3,6+6,4=10cm

\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)

\(AB=\sqrt{3.6\cdot10}=6\left(cm\right)\)

=>AC=8cm

Quang đăng Lê vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 4 2023 lúc 23:23

a: Xét ΔCHA vuông tại H và ΔCHD vuông tại H có

CH chung

HA=HD

=>ΔCHA=ΔCHD

b: Xét tứ giác ABDE có

H la trung điểm chung của AD và BE

=>ABDE là hình bình hành

=>DE//AB

=>DE vuôg góc AC

Xét ΔCAD có

CH,DE là đường cao

CH cắt DE tại E

=>E là trực tâm

Nguyễn Khánh An
Xem chi tiết
Nguyễn Ngọc Anh Minh
28 tháng 7 2023 lúc 8:17

A B H D E C I

a/

\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích các hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow AH=\sqrt{HB.HC}=\sqrt{4.9}=6cm\)

\(\tan\widehat{ABC}=\dfrac{AH}{HB}=\dfrac{6}{4}=\dfrac{3}{2}\)

b/

Xét tg vuông AHB có

\(HB^2=BD.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

Xét tg vuông AHC có

\(HC^2=CE.AC\) (lý do như trên)

\(CE.BD.AC.AB=HB^2.HC^2=\left(HB.HC\right)^2\)

Mà \(HB.HC=AH^2\) (cmt)

\(\Rightarrow CE.BD.AC.AB=AH^4\)

c/

\(HD\perp AB;AC\perp AB\) => HD//AC => HD//AE

\(HE\perp AC;AB\perp AC\) => HE//AB => HE//AD

=> ADHE là hình bình hành mà \(\widehat{A}=90^o\) => ADHE là HCN

Xét tg vuông ADH và tg vuông ADE có

HD = AE (cạnh đối HCN)

AD chung

=> tg ADH = tg ADE (Hai tg vuông có 2 cạnh góc vuông = nhau)

\(\Rightarrow\widehat{AED}=\widehat{AHD}\) 

\(\widehat{AHD}=\widehat{B}\) (cùng phụ với \(\widehat{BAH}\) ) 

\(\Rightarrow\widehat{AED}=\widehat{B}\) (1)

\(\widehat{C}+\widehat{B}=90^o\) (2)

\(\widehat{IAE}+\widehat{AED}=90^o\Rightarrow\widehat{IAE}+\widehat{B}=90^o\)  (3)

Từ (2) và (3) => \(\widehat{IAE}=\widehat{C}\) => tg AIC cân tại I => IA=IC

Ta có

\(\widehat{IAE}+\widehat{BAI}=\widehat{A}=90^o\)

\(\Rightarrow\widehat{C}+\widehat{BAI}=90^o\) mà \(\widehat{C}+\widehat{B}=90^o\)

\(\Rightarrow\widehat{BAI}=\widehat{B}\) => tg ABI cân tại I => IA=IB

Mà IA= IC (cmt)

=> IB=IC => I là trung điểm của BC

 

 

 

 

 

 

 

Huyền Cao thị
Xem chi tiết
Akai Haruma
1 tháng 3 2022 lúc 0:49

Đề không rõ. Bạn coi lại đề.

hiền nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 11 2023 lúc 19:22

a: ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}+30^0=90^0\)

=>\(\widehat{ABC}=60^0\)

Xét ΔABD có

AH là đường cao

AH là đường trung tuyến

Do đó: ΔABD cân tại A

Xét ΔABD cân tại A có \(\widehat{B}=60^0\)

nên ΔABD đều

b: ΔABD đều

=>\(\widehat{BAD}=60^0\)

\(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)

=>\(\widehat{CAD}+60^0=90^0\)

=>\(\widehat{CAD}=30^0\)

Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)

nên ΔDAC cân tại D

=>DA=DC

Xét ΔDHA vuông tại H và ΔDEC vuông tại E có

DA=DC

\(\widehat{HDA}=\widehat{EDC}\)

Do đó: ΔDHA=ΔDEC

=>DE=DH

Xét ΔDEH và ΔDAC có

\(\dfrac{DE}{DA}=\dfrac{DH}{DC}\)(DE=DH; DA=DC)

\(\widehat{EDH}=\widehat{ADC}\)

Do đó: ΔDEH đồng dạng với ΔDAC

=>\(\widehat{DEH}=\widehat{DAC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên EH//AC

Hy Đinh Lạp Tần
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 20:49

1: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=3^2+4^2=25\)

=>BC=5(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot5=3\cdot4=12\)

=>AH=2,4(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CA=CA^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1,8\left(cm\right)\\CH=\dfrac{4^2}{5}=3,2\left(cm\right)\end{matrix}\right.\)

2: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>AH=EF

Xét ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot EB=HE^2\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot FC=HF^2\)

\(AE\cdot EB+AF\cdot FC=HE^2+HF^2=EF^2=AH^2\)

3: Xét ΔBAC vuông tại B có \(cosB=\dfrac{BA}{BC}\)

Xét ΔBHA vuông tại H có \(cosB=\dfrac{BH}{BA}\)

Xét ΔBEH vuông tại E có \(cosB=\dfrac{BE}{BH}\)

\(cos^3B=cosB\cdot cosB\cdot cosB\)

\(=\dfrac{BA}{BC}\cdot\dfrac{BH}{BA}\cdot\dfrac{BE}{BH}=\dfrac{BE}{BC}\)

=>\(BE=BC\cdot cos^3B\)

doan thi thuy linh
Xem chi tiết