Cho △ABC vuông tại A, gọi H thuộc BC sao cho AH2=HC*HB. Cm AH là đ/c của △ABC
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC)
a) Chứng minh tam giác HBA đồng dạng với tam giác ABC
b) Chứng minh AH2 = HB . HC
c) Tia phân giác của góc AHC cắt AC tại D. Chứng minh HB/HC = AD^2/DC^2
Cho tam giác ABC vuông tại A; đường cao AH ( H thuộc BC ) và phân giác CM ( M thuộc AB ). N là giao điểm AH và CM. Biết BH = 3cm; HC = 27cm. Chứng minh AH2 = BH x HC
Cho tam giác ABC vuông tại A có đường cao AH. a/ cm AH2= HB.HC. b/biết HB=3,6cm, HC=6,4cm. Tính BC, AH, AB, AC
a: Xet ΔABC vuông tại A co AH là đường cao
nên AH^2=HB*HC
b: BC=3,6+6,4=10cm
\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)
\(AB=\sqrt{3.6\cdot10}=6\left(cm\right)\)
=>AC=8cm
cho tg abc vuông tại a ( ab<ac). vẽ ah vuông góc bc tại h. trên tia đối của tia ha lấy d sao cho hd=ha
a. cm tg ahc= tg dhc
b. lấy e thuộc hc sao cho he=hb. cm e là trực tâm của tg adc
c. cm ae+CD>BC
a: Xét ΔCHA vuông tại H và ΔCHD vuông tại H có
CH chung
HA=HD
=>ΔCHA=ΔCHD
b: Xét tứ giác ABDE có
H la trung điểm chung của AD và BE
=>ABDE là hình bình hành
=>DE//AB
=>DE vuôg góc AC
Xét ΔCAD có
CH,DE là đường cao
CH cắt DE tại E
=>E là trực tâm
cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC)
a) biết HB = 4cm , HC = 9cm. tính AH và số đo góc ABC
b) gọi D là hình chiếu của H trên AB; E là hình chiếu của H trên AC. chứng minh CE.BD.AC.AB = AH4
c) kẻ AI vuông góc với ED (I thuộc BC). chứng minh I là trung điểm BC
giải chi tiết giúp mình ạ! mình cảm ơn nhiều<3
a/
\(AH^2=HB.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích các hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow AH=\sqrt{HB.HC}=\sqrt{4.9}=6cm\)
\(\tan\widehat{ABC}=\dfrac{AH}{HB}=\dfrac{6}{4}=\dfrac{3}{2}\)
b/
Xét tg vuông AHB có
\(HB^2=BD.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông AHC có
\(HC^2=CE.AC\) (lý do như trên)
\(CE.BD.AC.AB=HB^2.HC^2=\left(HB.HC\right)^2\)
Mà \(HB.HC=AH^2\) (cmt)
\(\Rightarrow CE.BD.AC.AB=AH^4\)
c/
\(HD\perp AB;AC\perp AB\) => HD//AC => HD//AE
\(HE\perp AC;AB\perp AC\) => HE//AB => HE//AD
=> ADHE là hình bình hành mà \(\widehat{A}=90^o\) => ADHE là HCN
Xét tg vuông ADH và tg vuông ADE có
HD = AE (cạnh đối HCN)
AD chung
=> tg ADH = tg ADE (Hai tg vuông có 2 cạnh góc vuông = nhau)
\(\Rightarrow\widehat{AED}=\widehat{AHD}\)
\(\widehat{AHD}=\widehat{B}\) (cùng phụ với \(\widehat{BAH}\) )
\(\Rightarrow\widehat{AED}=\widehat{B}\) (1)
\(\widehat{C}+\widehat{B}=90^o\) (2)
\(\widehat{IAE}+\widehat{AED}=90^o\Rightarrow\widehat{IAE}+\widehat{B}=90^o\) (3)
Từ (2) và (3) => \(\widehat{IAE}=\widehat{C}\) => tg AIC cân tại I => IA=IC
Ta có
\(\widehat{IAE}+\widehat{BAI}=\widehat{A}=90^o\)
\(\Rightarrow\widehat{C}+\widehat{BAI}=90^o\) mà \(\widehat{C}+\widehat{B}=90^o\)
\(\Rightarrow\widehat{BAI}=\widehat{B}\) => tg ABI cân tại I => IA=IB
Mà IA= IC (cmt)
=> IB=IC => I là trung điểm của BC
Cho tam giác ABC có góc B >góc C .Kẻ AH vuông góc BC sao cho H thuộc HC . Gọi Đ là điểm nằm giữa A và H .CM: a)BH
cho tam giác ABC vuông tại A , góc C = 30 độ kẻ AH vuông góc BC tại H . Trên HC lấy D sao cho HD=HB. Từ C kẻ CE vuông góc AD tại E ( E thuộc AD)
a) CM: tam giác ABD là tam giác đều
b) CM: EH || AC
a: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}+30^0=90^0\)
=>\(\widehat{ABC}=60^0\)
Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
Xét ΔABD cân tại A có \(\widehat{B}=60^0\)
nên ΔABD đều
b: ΔABD đều
=>\(\widehat{BAD}=60^0\)
\(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)
=>\(\widehat{CAD}+60^0=90^0\)
=>\(\widehat{CAD}=30^0\)
Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)
nên ΔDAC cân tại D
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
\(\widehat{HDA}=\widehat{EDC}\)
Do đó: ΔDHA=ΔDEC
=>DE=DH
Xét ΔDEH và ΔDAC có
\(\dfrac{DE}{DA}=\dfrac{DH}{DC}\)(DE=DH; DA=DC)
\(\widehat{EDH}=\widehat{ADC}\)
Do đó: ΔDEH đồng dạng với ΔDAC
=>\(\widehat{DEH}=\widehat{DAC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên EH//AC
Cho tam giác ABC vuông tại A có đường cao AH.
1) Cho biết AB=3 cm, AC=4 cm. Tính độ dài các đoạn BC,HB,HC,AH
2) Vẽ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC)
Chứng minh: AE.EB+AF.FC=AH2
3) Chứng minh: BE=BC. cos3 B
1: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=3^2+4^2=25\)
=>BC=5(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot5=3\cdot4=12\)
=>AH=2,4(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CA=CA^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1,8\left(cm\right)\\CH=\dfrac{4^2}{5}=3,2\left(cm\right)\end{matrix}\right.\)
2: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>AH=EF
Xét ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot EB=HE^2\)
Xét ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot FC=HF^2\)
\(AE\cdot EB+AF\cdot FC=HE^2+HF^2=EF^2=AH^2\)
3: Xét ΔBAC vuông tại B có \(cosB=\dfrac{BA}{BC}\)
Xét ΔBHA vuông tại H có \(cosB=\dfrac{BH}{BA}\)
Xét ΔBEH vuông tại E có \(cosB=\dfrac{BE}{BH}\)
\(cos^3B=cosB\cdot cosB\cdot cosB\)
\(=\dfrac{BA}{BC}\cdot\dfrac{BH}{BA}\cdot\dfrac{BE}{BH}=\dfrac{BE}{BC}\)
=>\(BE=BC\cdot cos^3B\)
Cho tam giác ABC vuông tại A với AB = 6 cm, BC = 10 cm. Kẻ đường cao AH,(H thuộc BC), trên đoạn HC lấy điểm D sao cho HD = HB. Từ C kẻ CE vuông góc với đưòng thẳng AD ( E thuộc đường thẳng AD), đường thẳng CE cắt AH tại M. Chứng minh CB là tia phân giác của góc ACM.