Cho tam giác ABC có D là trung điểm của AB, DE//DC, E thuộc AC
CMR: E là trung điểm của AC.
Cho tam giác ABC có D là trung điểm của bc .qua d kẻ de song song với ac(e thuộc ab)
Chứng minh E là trung điểm AB .Từ đó suy ra AC =2DE
Vì D là trung điểm BC mà DE//AC nên E là trung điểm AB
Do đó DE là đường trung bình tam giác ABC
Vậy \(DE=\dfrac{1}{2}AC\) hay \(AC=2DE\)
Cho Tam giác ABC,D là trung điểm đoạn thẳng AB,DE song song với BC(E thuộc AC)
CMR: E là trung điểm của AC
AD = DB
DE // BC
⇒ E là trung điểm của AC (đpcm)
Vì một đường thẳng đi qua trung điểm của một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm của cạnh thứ ba
cho tam giác ABC có D , E lần lượt thuộc cạnh AB , AC sao cho DE // BC Trung tuyến AM của tam giác ABC cắt DE ở N . CM N là trung điểm của DE
vì DE // BC
=> DN // BM
VÀ EN // MC
=> DN/BM = EN/CM = AN/AM
=> DN = CN
cho tam giác ABC. điểm D thuộc BC , kẻ DE// AC [E thuộc AB] , kẻ DF //AB [F thuộc AC ] gọi I là trung điểm của EF. chứng minh rằng I là trung điểm của AB
Vì DF // AE (DF//AB; E \(\in AB\)) nên \(\widehat{AEF}=\widehat{EFD}\) (2 góc so le trong)
Hay \(\widehat{AEI}=\widehat{IFD}\) ( I \(\in EF\) )
Xét \(\Delta AEI\) và \(\Delta DFI\) có:
\(\widehat{AEI}=\widehat{IFD}\) (c/m trên)
IE=IF(I là trung điểm của EF)
\(\widehat{AIE}=\widehat{DIF}\) (2 góc đối đỉnh)
=> \(\Delta AEI=\Delta DFI\left(g.c.g\right)\)
=> IA=IB( 2 cạnh tương ứng). Mà I nằm giữa A và B
=> I là trung điểm của AB
cho tam giác ABC có D là trung điểm của AB.Điểm E thuộc cạnh AC sao cho DE//BC.Chứng minh rằng E là trung điểm của AC
Cho tam giác ABC, D là trung điểm AB, E là trung diểm của AC. Vẽ điểm F sao cho E là trung điểm của DF. C/M:
a) DB= CF
b) ∆BDC= ∆ FCD
c) DE // DC và DE = BC/2
Cho tam giác ABC, D thuộc AB, E thuộc AC sao cho AD/AB=CE/CA. M là trung điểm DE. CMR M nằm trên đường trung bình của tam giác ABC
nhìn là bt đề sai liền luôn e ạ
AD/DB thì phải kèm AC/EC ms ra DE song song BC theo đl ta-lét ms cm bài đc á
1.cho tam giác ABC có BC=2AB. M là trung điểm của BC, D là trung điểm của BM.TRên tia AD lấy điểm E sao cho AE=2AD. C/m: a, tam giác MAE=tam giác MAC b, AC=2AD
2.cho tam giác ABC đều. D thuộc BC sao cho BC=3BD.Vẽ DE vuông góc với BC(E thuộc AB) DF vuông góc với AC( F thuộc AC). C/m tam giác DEF đều.
3. Cho tam giác ABC cân tại A.D thuộc AB. E thuộc AC sao cho AD=AE. O là giao điểm của BE và CD. C/m
a,BE=CD b, DE song song với BC
bai tinh chat tia phan giac cua mot goc
cho tam giác ABC , điểm D thuộc cạnh BC . Kẻ DE // AC, DF //AB (E thuộc AB / F thuộc AC ) . Gọi y là trung điểm của EF . Chứng minh rằng y là trung điểm của AD.
Vì DF // AE (DF//AB; E ) nên (2 góc so le trong)
Hay ( I )
Xét và có:
(c/m trên)
IE=IF(I là trung điểm của EF)
(2 góc đối đỉnh)
=>
=> IA=IB( 2 cạnh tương ứng). Mà I nằm giữa A và B
=> I là trung điểm của AB
Vì DF // AE (DF//AB; E ∈AB∈AB) nên ˆAEF=ˆEFDAEF^=EFD^ (2 góc so le trong)
Hay ˆAEI=ˆIFDAEI^=IFD^ ( I ∈EF∈EF )
Xét ΔAEIΔAEI và ΔDFIΔDFI có:
ˆAEI=ˆIFDAEI^=IFD^ (c/m trên)
IE=IF(I là trung điểm của EF)
ˆAIE=ˆDIFAIE^=DIF^ (2 góc đối đỉnh)
=> ΔAEI=ΔDFI(g.c.g)ΔAEI=ΔDFI(g.c.g)
=> IA=IB( 2 cạnh tương ứng). Mà I nằm giữa A và B
=> I là trung điểm của AB