Thực hiện phép tính
\(\left(x^2-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)\)
thực hiện phép tính:
\(\dfrac{1}{x\left(x+1\right)}\)+\(\dfrac{1}{\left(x+1\right)\left(x+2\right)}\)+\(\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)+...+\(\dfrac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+...+\dfrac{1}{x+2013}-\dfrac{1}{x+2014}\)
=1/x-1/x+2014
\(=\dfrac{x+2014-x}{x\left(x+2014\right)}=\dfrac{2014}{x\left(x+2014\right)}\)
Thực hiện phép tính:
\(\left(8-5x\right).\left(x+2\right)+4.\left(x-2\right).\left(x-1\right)+2.\left(x-2\right).\left(x+2\right)+10\)
(8 - 5x).(x + 2) + 4.(x - 2)(x - 1) + 2.(x - 2)(x + 2) + 10
= (8x + 16 - 5x2 - 10x) + 4.(x2 - 3x + 2) + 2.(x2 - 4) + 10
= 8x + 16 - 5x2 - 10x + 4x2 - 12x + 8 + 2x2 - 8 + 10
= (8x - 10x - 12x) + (-5x2 + 4x2 + 2x2) + (16 + 8 - 8 + 10)
= -14x + x2 + 26
thực hiện phép tính:
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
\(ĐKXĐ:x\ne3;x\ne-1\)
Nếu x=0 là nghiệm của phương trình
Nếu x khác 0 ta có:
\(\frac{1}{2\left(x-3\right)}+\frac{1}{2\left(x-1\right)}=\frac{2}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{x-1+x-3}{\left(x-1\right)\left(x-3\right)}=\frac{4}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{2x-4}{\left(x-1\right)\left(x-3\right)}=\frac{4}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow2x-4=4\)
\(\Leftrightarrow x=4\)
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\left(x\ne-1;x\ne3\right)\)
<=> \(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)
<=> \(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\frac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}=0\)
<=> \(\frac{x^2+x+x^2-3x-4x}{2\left(x-3\right)\left(x+1\right)}=0\)
=> 2x2-6x=0
<=> 2x(x-3)=0
<=> \(\orbr{\begin{cases}2x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
ĐCĐK x khác -1 và x khác 3 => x=0
Vậy x=0 là nghiệm của phương trình
Bài của @shibo@ chép sai đề ở vế phải
thực hiện phép tính
1/ \(4xy\left(x^2-2xy+3y^2\right)\)
2/ \(\left(x^2-2\right)\left(2x^2+4+x^4\right)\)
1: \(4xy\left(x^2-2xy+3y^2\right)=4x^3y-8x^2y^2+12xy^3\)
2: \(\left(x^2-2\right)\left(x^4+2x^2+4\right)=x^6-8\)
Thực hiện phép tính:
a) \(3x.\left(2x^2-3x+4\right)\)
b) \(\left(x+3\right)^2+\left(3x-2\right)\left(x+4\right)\)
c) \(\dfrac{2x-4}{x-1}+\dfrac{2x+2}{x^2-1}\)
`a)3x(2x^2-3x+4)`
`=6x^3-9x^2+12x`
______________________________________________
`b)(x+3)^2+(3x-2)(x+4)`
`=x^2+6x+9+3x^2+12x-2x-8`
`=4x^2+16x+1`
______________________________________________
`c)[2x-4]/[x-1]+[2x+2]/[x^2-1]` `ĐK: x \ne +-1`
`=[(2x-4)(x+1)+2x+2]/[(x-1)(x+1)]`
`=[2x^2+2x-4x-4+2x+2]/[(x-1)(x+1)]`
`=[2x^2-2]/[x^2-1]`
`=2`
THỰC HIỆN PHÉP TÍNH :
\(\left(x^2-1\right)\left(\dfrac{1}{x-1}-\dfrac{1}{x+1}-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\cdot\dfrac{x+1-x+1-x^2+1}{\left(x-1\right)\left(x+1\right)}\left(x\ne\pm1\right)\\ =3-x^2\)
Thực hiện phép tính:
\(a,\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}\)
\(b,\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)
a) 1/x(x + 1) + 1/(x + 1)(x + 2) + 1/(x + 2)(x + 3) + 1/(x + 3)(x + 4)
( 1/x - 1/x+1) + (1/x+1 - 1/x+2) + (1/x+2 - 1/ x+3) + 1/(x+3 - 1/x+4)
(1/x +1/x+4) - ( 1/x+2 - 1/x+2) - ( 1/x+3 - 1/x+3)
1/x +1/x+4
2x+4/x(x+4)
Câu b bạn tách các mẫu thành nhân tử rồi làm như câu a nhé
Thực hiện phép tính
\(a,\left(1-x\right)^2\)\(+x\left(2-x\right)\)
\(b,\dfrac{x^2+4x+4}{x+2}\)
\(a,=1-2x+x^2+2x-x^2=1\\ b,=\dfrac{\left(x+2\right)^2}{x+2}=x+2\)
Thực hiện phép tính:
\(a,\left(x-\dfrac{x^2+y^2}{x+y}\right)\left(\dfrac{1}{y}+\dfrac{2}{x-y}\right)\)
\(b,\left(\dfrac{2}{x^2-1}+\dfrac{x^2-3}{3x^2-1}\right):\left[\dfrac{1}{x}-\dfrac{2x\left(x^2-3\right)}{\left(x^2-1\right)\left(3x^2-1\right)}\right]\)