Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
VuongTung10x
Xem chi tiết
Huỳnh Quang Sang
27 tháng 9 2019 lúc 17:13

\(A=2^0+2^1+2^2+2^3+...+2^{2010}\)

\(A=1+2+2^2+2^3+...+2^{2010}\)

\(2A=2+2^2+2^3+...+2^{2011}\)

\(2A-A=\left[2+2^2+2^3+...+2^{2011}\right]-\left[1+2+2^2+2^3+...+2^{2010}\right]\)

\(A=2^{2011}-1\)

Mà \(B=2^{2011}-1\)

=> A = B

Hoàng Thanh Huyền
27 tháng 9 2019 lúc 17:18

Ta có: A=\(2^0+2^1+2^2+2^3+...+2^{2010}\)

          2A=\(2^1+2^2+2^3+2^4+...+2^{2011}\)

     2A-A hay A=\(2^{2011}-2^0\)

                       =\(2^{2011}-1\)

Vì \(2^{2011}-1=2^{2011}-1\)

\(\Rightarrow\)A=B

Hok tốt nha!!!

Phạm Việt Hòa
18 tháng 1 2023 lúc 16:54

`A``=``2^0``+`2^1``+``2^2``+`2^3``+`...`+``2^(2010)`

`2A=2^1+2^2+2^3+2^4+...+2^(2011)`

`2A-A=(2^1+2^2+2^3+2^4+...+2^(2011))-(2^0+2^1+2^2+2^3+...+2^(2010)`

`A=2^(2011)-1`

`A=B`

Nguyễn Việt Dũng
Xem chi tiết
mylu
Xem chi tiết
nguyễn thu huyền
Xem chi tiết
Rinu
17 tháng 6 2019 lúc 10:08

Trả lời

a,A > B

b,A < B.

Mk ko chắc nữa !

okazaki *  Nightcore -...
17 tháng 6 2019 lúc 10:23

a)nếu 200910+9=200919  

vậy 200919>201010suy ra A>B

nếu 36:32=4      và 47:43  =47-3=44

vậy 4<44  suy ra  A<B

chúc bn 

hok tốt

Nguyễn Linh Chi
17 tháng 6 2019 lúc 10:24

a) \(A=2009^{10}+2009^9\)và \(B=2010^{10}\)

\(A=2009^{10}+2009^9=2009^9\left(2009+1\right)=2009^9.2010\)

\(B=2010^{10}=2010.2010^9\)

Vì 2010>2009 nên \(2010^9>2009^9\)Suy ra: B>A

b) \(A=36:3^2=6^2:3^2=\left(6:3\right)^2=2^2=4\)

\(B=4^7:4^3=4^{7-3}=4^4\)

=> B>A

1 Baoanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2021 lúc 20:53

\(2A=2^2+2^4+2^5+...+2^{2011}\)

\(\Leftrightarrow A=2^{2011}-2< 2^{2022}-2\)

Phan Anh Quân
Xem chi tiết
le bac hai my
Xem chi tiết
THANH THẢO CUTE
31 tháng 8 2017 lúc 14:18

A<B đó 

đảm bao 100% luôn

le bac hai my
31 tháng 8 2017 lúc 14:23

bạn ghi cách giải ra giúp mình với

Ánh
31 tháng 8 2017 lúc 15:49

A<B đó đúng 100%

Thủy Thủ Mặt Trăng
Xem chi tiết
Huyền Anh
21 tháng 9 2017 lúc 12:07

mk nghĩ là a>b

Thắng  Hoàng
16 tháng 11 2017 lúc 11:03

a>b 100% đúng^_^

chu phương anh
16 tháng 11 2017 lúc 11:08

khó quá

nguyenlengan
Xem chi tiết
Lê Hoài Duyên
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Nguyễn Hải Nam
10 tháng 12 2017 lúc 21:36

Thanks bạn

Đặng Thị Khánh Ly
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Khách vãng lai đã xóa