Cho tam giac ABC cân tại A có H là trung điểm của BC. Kẻ HM, HN lần lượt vuông góc với AB, AC. CM cắt BN ở K. Chứng minh: A, K, H thằng hàng
Cho tam giác ABC cân tại A có H là trung điểm của BC. Kẻ HM,HN lần lượt vuông góc với AB,AC,CM cắt BN ơt K. Chứng minh 3 điểm A,K,H thẳng hàng
Tóm tắt thôi nhé, CM dễ lắm :))
Ta có: Tam giác ABC cân tại A có AH là đường trung tuyến
=> AH đồng thời là đường phân giác
=> \(\hept{\begin{cases}\widehat{MAK}=\widehat{KAN}\\AM=AN\end{cases}}\)
=> Δ AKN = Δ AKM (c.g.c)
=> KM = KN
=> K nằm trên đường phân giác AH của tam giác ABC
=> A,H,K thẳng hàng
cho tam giác ABC vuông cân tại A. Gọi M,N lần lượt là trung điểm của AB,AC. Kẻ NH vuông góc với CM tại H . Kẻ HE vuông góc với AB tại E. Từ A kẻ AK vuông góc với CM tại K và AQ vuống góc với HN tại Q
a) tính góc BKA
b) Chứng minh rằng tam giac ABH cân và HM là phân giác của góc BHE
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H
a/ Chứng minh :tam giác AHB = tam giác AHCvà AH là tia phân giác của góc BAC
b/ Từ H kẻ HM vuông góc với AB, HN vuông góc với AC ,AH cắt MN tại K. Chứng minh AH vuông góc với MN
c/ Trên tia đối của tia HM lấy P sao cho H là trung điểm của MP, NP cắt BC tại E, NH cắt ME tại Q. Chứng minh: P, Q, K thẳng hàng.
Cho tam giác ABC có A=90 và AB<AC , kẻ AH vuông góc với BC (H thuộc BC) . Gọi HM,HN lần lượt là các phân giác của tam giác ABH và ACH . Gọi I là trung điểm của MN tại AI cắt BC ở K . Chứng minh MN=AK
Cho tam giác ABC cân ở A có đường cao AH (H thuộc BC)
a, Chứng minh H là trung điểm của BC
b, Kẻ HM vuông góc với AB tại M, HN vuông góc vs AC tại N. Chứng minh tam giác AMN cân ở A
c, Vẽ điểm P sao cho điểm H là trung điểm của đoạn thẳng NP. Chứng minh Đường thẳng BC là đường trung trực của đoạn thẳng MP
d, MP cắt BC tại điểm K. NK cắt MH tại điểm D. Chứng minh Ba đường thẳng AH,MN,DP cùng đi qua 1 điểm
cho tam giác ABC có góc A = 90 và AB<AC, kẻ AH vuông góc với BC (H thuộc BC). gọi HM,HN lần lượt là các đường phân giác cua tam giác ABH và ACH. gọi I là trung điểm của MN, tia AI cắt BC ở K. chứng minh MN=AK và I là trung điểm của AK
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H
a/ Chứng minh :tam giác AHB = tam giác AHCvà AH là tia phân giác của góc BAC
b/ Từ H kẻ HM vuông góc với AB, HN vuông góc với AC ,AH cắt MN tại K. Chứng minh AH vuông góc với MN
c/ Trên tia đối của tia HM lấy P sao cho H là trung điểm của MP, NP cắt BC tại E, NH cắt ME tại Q. Chứng minh: P, Q, K thẳng hàng.
cho tam giác ABC vuông cân tại A. vẽ AH vuông với BC tại H. a) chứng minh góc AHC=góc AHB b) Kẻ HM vuông góc với AC tại H. Trên tia đối của tia HM lấy điểm N sao cho HM=HN c) Chúng minh BN//AC d) Kẻ HQ vuông góc với AB tại Q. Chứng minh BC là đường trung trực của NQ
a: Xét ΔAHC vuông tại H và ΔAHB vuông tại H có
AB=AC
AH chung
Do đó: ΔAHC=ΔAHB
Suy ra: \(\widehat{AHC}=\widehat{AHB}\)
b: Xét tứ giác BNCM có
H là trung điểm của BC
H là trung điểm của NM
Do đó: BNCM là hình bình hành
Suy ra: BN//CM
hay BN//AC
Cho tam giác ABC cân tại A. Gọi H, K lần lượt là trung điểm của BC, AC.
a) Chứng minh tứ giác ABHK là hình thang.
b) Qua A vẽ đường thẳng vuông góc với AH, cắt tia HK tại D. Chứng minh AD=BH.
c) Vẽ HN vuông góc với AB (N thuộc AB), gọi I là trung điểm của AN. Trên tia đối của tia BH, lấy điểm M sao cho B là trung điểm của HM. Chứng minh MN vuông góc với HI.