\(\frac{a-b}{4b^2}\cdot\sqrt{\frac{4a^2b^4}{a^2-2ab+b^2}}\)
2ab+c(a+b)=6
a,b,c>0
GTNN
\(\frac{2a+2b+c}{\sqrt{4a^2+12}+\sqrt{4b^2+12}+\sqrt{c^2+12}}\)
Ta có :
\(\sqrt{4a^2+12}=\sqrt{4a^2+4ab+2c\left(a+b\right)}=\sqrt{\left(2a+c\right)\left(2a+2b\right)}\)
\(\le\frac{4a+2b+c}{2}\)
Tương tự : \(\sqrt{4b^2+12}\le\frac{4b+2a+c}{2}\); \(\sqrt{c^2+12}=\sqrt{\left(2a+c\right)\left(2b+c\right)}\le\frac{2a+2b+2c}{2}\)
\(\Rightarrow\sqrt{4a^2+12}+\sqrt{4b^2+12}+\sqrt{c^2+12}\le\frac{4a+2b+c+4b+2a+c+2a+2b+2c}{2}\)
\(=4a+4b+2c\)
\(\Rightarrow\frac{2a+2b+c}{\sqrt{4a^2+12}+\sqrt{4b^2+12}+\sqrt{c^2+12}}\ge\frac{2a+2b+c}{4a+4b+2c}=\frac{1}{2}\)
Dấu "=" xảy ra khi a = b = 1 ; c = 2
Cho biểu thức sau:
\(P=\left(\frac{1}{ab-2}+\frac{1}{ab+2}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)
a, Rút gọn biểu thức P
b, Tính giá trị của P khi \(\frac{a^2+4}{b^2+9}=\frac{a^2}{9}\)
ĐKXĐ : \(\hept{\begin{cases}ab-2\ne0\\ab+2\ne0\\a^4b^4\ne0\end{cases}}\Rightarrow ab\ne\pm2;a\ne0;b\ne0\)
\(P=\left(\frac{1}{ab-2}+\frac{1}{ab+2}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)
\(=\left(\frac{2ab}{a^2b^2-4}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)
\(=\left(\frac{4a^3b^3}{a^4b^4-16}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)
\(=\frac{8a^5b^5}{a^8b^8-16^2}.\frac{a^4b^4+16}{a^4b^4}=\frac{8a^5b^5\left(a^4b^4+16\right)}{\left(a^4b^4-16\right)\left(a^4b^4+16\right).a^4b^4}\)
\(=\frac{8ab}{a^4b^4-16}\)
b) Khi \(\frac{a^2+4}{b^2+9}=\frac{a^2}{9}\)
=> (a2 + 4).9 = a2(b2 + 9)
=> 9a2 + 36 = a2b2 + 9a2
=> a2b2 = 36
=> (ab)2 = 36
=> \(\orbr{\begin{cases}ab=6\left(tm\right)\\ab=-6\left(tm\right)\end{cases}}\)
Khi ab = 6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.6}{6^4-16}=\frac{48}{1280}=\frac{3}{80}\)
Khi ab = -6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.\left(-6\right)}{\left(-6\right)^4-16}=-\frac{3}{80}\)
Hi :D
Sau đây là một số bài mình sưu tầm được và mình post lên đây nhầm mong muốn các bạn đóng góp lời giải của mình vào
Câu 1:
Với a,b,c là các số thực dương và \(abc=1\).Chứng minh rằng:
\(\frac{1}{4a^2-2a+1}+\frac{1}{4b^2-2b+1}+\frac{1}{4c^2-2c+1}\ge1\left(\cdot\right)\)
Câu 2:
Với a,b,c là các số thực dương và \(abc=1\).Chứng minh rằng:
\(\frac{1}{\sqrt{4a^2+a+4}}+\frac{1}{\sqrt{4b^2+b+4}}+\frac{1}{\sqrt{4c^2+c+4}}\le1\left(\cdot\cdot\right)\)
Câu 3:
Với a,b,c,d là các số thực dương và \(\frac{1}{a+3}+\frac{1}{b+3}+\frac{1}{c+3}+\frac{1}{d+3}=1\).Chứng minh rằng:
\(\frac{a}{a^2+3}+\frac{b}{b^2+3}+\frac{c}{c^2+3}+\frac{d}{d^2+2}\le1\left(\cdot\cdot\cdot\right)\)
Câu 4:
Với a,b,c,d thõa mãn điều kiện \(a+b+c+d=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\),Chứng minh rằng:
\(2\left(a+b+c+d\right)\ge\sqrt{a^2+3}+\sqrt{b^2+3}+\sqrt{c^2+3}+\sqrt{d^2+3}\left(\cdot\cdot\cdot\cdot\right)\)
Câu 5:
Với a,b,c là các số thực không âm.Chứng minh rằng:
\(\frac{a^2-bc}{2a^2+b^2+c^2}+\frac{b^2-ca}{a^2+2b^2+c^2}+\frac{c^2-ab}{a^2+b^2+2c^2}\ge0\left(\cdot\cdot\cdot\cdot\cdot\cdot\right)\)
Continue...
Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)
Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)
Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:
Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:
\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)
Đây là điều hiển nhiên.
cho a,b,c>0. CMR
\(\frac{2ab}{3a+8b+6c}+\frac{3bc}{3b+6c+4}+\frac{3ac}{9c+4a+4b}\le\frac{a+2b+3c}{2}\)
Cho a, b, c thỏa mãn: c\(\ne\)2b; a+b\(\ne\)\(\frac{c}2\); c2=4(ac+bc-2ab).
CMR: \(\frac{4a^2+(2a-c)^2}{4b^2+(2b-c)^2}=\frac{2a-c}{2b-c}\).
Cho a,b,c t/m; c \(\ne\)2b, a + b \(\ne\) \(\frac{c}{2}\), c2 = 4(ac + bc - 2ab)
CMR: \(\frac{4a^2+\left(2a-c\right)^2}{4b^2+\left(2b-c\right)^2}=\frac{2a-c}{2b-c}\)
Cho \(a^3-4a^2b=2b^3-5ab^2,a\ne b\ne0\) .Tính \(P=\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab}\) .
1 . nhá: cách làm: phân tích đề bài ta cho làm sao xuất hiện hiện các hằng đẳg thuức" \(\left(a-b\right)^3=b\left(a-b\right)^2\Leftrightarrow\frac{\left(a-b\right)^3}{\left(a-b\right)^2}=b\Rightarrow a=2b\)
từ đó chỗ nào có "a" thay vào P thì ta sẽ đc kq là 1
Toán 8 nâng cao
1/ \(\sqrt{\frac{m}{1-2x+x^2}}\cdot\sqrt{\frac{4m-8mx+4mx^2}{81}}\)
2/\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
3/\(\frac{a+b}{b^2}\sqrt{\frac{a^2b^4}{a^2+2ab+b^2}}\)
1/ \(\sqrt{\frac{m}{1-2x+x^2}}\cdot\sqrt{\frac{4m-8mx+4mx^2}{81}}\)
\(=\sqrt{\frac{m}{\left(1-x\right)^2}}\cdot\sqrt{\frac{4m\left(1-2x+x^2\right)}{81}}\)
\(=\sqrt{\frac{m}{\left(1-x\right)^2}}\cdot\sqrt{\frac{4m\left(1-x\right)^2}{81}}\)
\(=\sqrt{\frac{m}{\left(1-x\right)^2}\cdot\frac{4m\left(1-x\right)^2}{81}}\)
\(=\sqrt{\frac{4m^2}{81}}=\sqrt{\frac{\left(2m\right)^2}{9^2}}=\frac{2\left|m\right|}{9}\)
3/\(\frac{a+b}{b^2}\sqrt{\frac{a^2b^4}{a^2+2ab+b^2}}\)
\(=\frac{a+b}{b^2}\sqrt{\frac{\left(ab^2\right)^2}{\left(a+b\right)^2}}\)
\(=\frac{a+b}{b^2}\cdot\frac{\left|a\right|b^2}{\left|a+b\right|}\)
TH1: \(\Rightarrow\frac{a+b}{b^2}\cdot\frac{\left|a\right|b^2}{-\left(a+b\right)}=-\left|a\right|\)
TH2: \(\Rightarrow\frac{a+b}{b^2}\cdot\frac{\left|a\right|b^2}{a+b}=\left|a\right|\)
2/\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
\(=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\frac{\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}\right)\cdot\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
\(=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\frac{\sqrt{a}-a}{1-\sqrt{a}}\right)\cdot\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
\(=\frac{1-a\sqrt{a}+\sqrt{a}-a}{1-\sqrt{a}}\cdot\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)
\(=\frac{1-a\sqrt{a}+\sqrt{a}-a}{1}\cdot\frac{1-\sqrt{a}}{\left(1-a\right)^2}\)
\(=\frac{\left(1-a\sqrt{a}+\sqrt{a}-a\right)\cdot\left(1-\sqrt{a}\right)}{\left(1-a\right)^2}\)
\(=\frac{1-a\sqrt{a}+\sqrt{a}-a-\sqrt{a}+a^2-a+a\sqrt{a}}{\left(1-a\right)^2}\)
\(=\frac{a^2-2a+1}{\left(1-a\right)^2}\)
\(=\frac{\left(a-1\right)^2}{\left(1-a\right)^2}=\frac{-\left(1-a\right)^2}{\left(1-a\right)^2}=-1\)
\(P=\frac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}+\frac{b}{\sqrt{\left(c+1\right)\left(c^2-c+1\right)}}+\frac{c}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}\)
\(\ge\frac{2a}{b^2+2}+\frac{2b}{c^2+2}+\frac{2c}{a^2+2}=\left(a+b+c\right)-\left(\frac{ab^2}{b^2+2}+\frac{bc^2}{c^2+2}+\frac{ca^2}{a^2+2}\right)\)
\(=6-\left(\frac{2ab^2}{b^2+4+b^2}+\frac{2bc^2}{c^2+4+c^2}+\frac{2ca^2}{a^2+4+a^2}\right)\ge6-\left(\frac{2ab}{b+4}+\frac{2bc}{c+4}+\frac{2ca}{a+4}\right)\)
\(=6-\left(2a+2b+2c-\frac{8a}{b+4}-\frac{8b}{c+4}-\frac{8c}{a+4}\right)\)
\(=\frac{8a}{b+4}+\frac{8b}{c+4}+\frac{8c}{a+4}-6=\frac{8a^2}{ab+4a}+\frac{8b^2}{bc+4b}+\frac{8c^2}{ca+4c}-6\)
\(\ge\frac{8\left(a+b+c\right)^2}{\left(ab+bc+ca\right)+4\left(a+b+c\right)}-6\ge\frac{288}{\frac{\left(a+b+c\right)^2}{3}+24}-6=2\)