cho tam giác ABC vuông tại A
AH là đường cao AB=21cm AC=72cm
a) Giải tam giác
b) Tính AH,BH.CH
Cho tam giác ABC vuông tại A có AB = 21cm, AC = 28 cm. Kẻ đường cao AH và phân giác góc A cắt BC tại D, đường thẳng qua D và song với AB cắt AC tại E.
a) Chứng minh: AH2 = BH.CH
b) Tính BD và DC.
c) Tính diện tích tam giác DEC?
Cho tam giác ABC có AB=21cm, AC=28cm, BC=35cm và đường cao AH.
a)Chứng minh tam giác ABC vuông
B)Chứng minh tam giác ABH đồng dạng với tam giác CBA và tính AH,BH
c)Chứng minh: AH^2=BH.CH
d)Gọi AD là đường phản giác của tam giác ABC. tính BD, CD và diện tích tam giác AHD.
e)Đường thẳng qua B vuong góc với AD cắt AH, AC lần lượt tại I và K. Tính IB/IK.
Giúp mình câu d nha mọi người
d, tim AH=16,8cm do tam giác ABH dồng dạng với tam giác CBA các cạnh tuong ứng tỉ lệ
tinh CD tính chất dg pg \(\frac{CD}{DB}=\frac{AC}{AB}\)
tính chat day ti so bang nhau
\(\frac{CD}{DB+CD}=\frac{AC}{AB+AC}\)
thế số vao rồi tính suy ra CD=20, BD=15
pytago trong tam giác HAC tińh CH=22,4
suy ra DH=2,4
Diện tích tam giác AHD=1/2 *AH*DH=20,16
Ban có thể tính laị so lieu
cho tam giác abc vuông tại a có ab=21cm, bc=35cm. a)giải tam giác vuông abc .b)tính độ dài phân giác ad và đường cao ah
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{35^2-21^2}=28\left(cm\right)\)
Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)
=>\(\widehat{B}\simeq53^0\)
=>\(\widehat{C}\simeq37^0\)
b: Xét ΔABC có AD là phân giác
nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot sin45=\dfrac{2\cdot21\cdot28}{21+28}\cdot\dfrac{\sqrt{2}}{2}\simeq16,97\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot35=21\cdot28\)
=>\(AH=16.8\left(cm\right)\)
cho tam giác ABC vuông tại A có AB=21cm,AC=28cm.kẻ đường cao AH và đường phân giác góc A cắt BC tại D,đường thẳng qua D và song song với AB cắt tại E
a.C/m AH2 =BH.CH
b.tính BC va DC
c.tinh dien tich tam giac DEC
1, Tam giác ABC vuông tại A, kẻ đường cao AH
a.Tính AB, AC,BC, HC nếu AH= 6cm, BH= 4,5cm
b.Biết AB= 6cm, HB- 3cm. Tính AH, AC,CH
5, Cho tam giác ABC vuông tại A có AB=21cm, góc C= 40 độ
a.Tính AC
b,Tính BC
Bài 5:
a) Xét ΔABC vuông tại A có
\(AC=AB\cdot\cot\widehat{C}\)
\(=21\cdot\cot40^0\)
\(\simeq25,03\left(cm\right)\)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)
hay \(BC\simeq32,67\left(cm\right)\)
Cho Tam giác ABC vuông tại A, AH là đường cao, AB=6cm, AC=8cm
a) Tìm các cặp tam giác đồng vị
b) tính BC,AH?
c) vẽ tia phân giác BE( E thuộc AC cắt AH tại I ) chứng minh I\(\dfrac{IH}{IA}\)\(=\dfrac{AE}{EC}\)
d) chứng minh\(^{AH^2=BH.CH}\)
Giúp mình gấp cám ơn mn rất nhiều
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
Xét ΔHAC vuông tại H và ΔABC vuông tại A có
góc C chung
=>ΔHAC đồng dạng với ΔABC
=>ΔHBA đồng dạng với ΔHAC
b: BC=căn 6^2+8^2=10cm
AH=6*8/10=4,8cm
d: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
Cho tam giác ABC vuông tại A đường cao AH biết AB= 21cm AC=28cm BC=35cm Tính AH BH CH
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=16,8\left(cm\right)\\BH=12,6\left(cm\right)\\CH=22,4\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC, vẽ đường cao AH (H thuộc cạnh BC). Cho biết ∠ABC = 45◦
, BH =20cm, HC = 21cm. Tính AC, AB.
(Lưu ý: 4ABH vuông tại H có ∠ABC = 45◦là tam giác gì?)
Cho tam giác ABC vuông ở A, đường cao AH. Hệ thức nào sai?
`AB^2 = BH.BC`
`AH^2 = BH.CH`
`(AH)/(AC) = (AB)/(BC)`
`(AH)/(BH) = (AB)/(AC)`
Cho tam giác `ABC` có `AB=3;AC=4;BC=5`, đường cao `AH`. Hệ thức nào sai?
`AH^2 = BH.CH`
`BH^2 = AH.CH`
`AB^2 = BH.BC`
`1/(AB^2) = 1/(AH^2) - 1/(AC^2)`
Cho tam giác ABC vuông ở `B`, đường cao `BH`. Hệ thức nào đúng?
`BH^2 = AH.CH`
`AH^2 = BH.CH`
`AB^2 = BH.BC`
`AB^2 +AC^2 = BC^2`