chung minh 1-1/2 mu 2 -1/ 3 mu 2 - 1/ 4 mu 2 - ... - 1/2015 mu 2 > 1/2015
chung minh rang : 1 phan 2 mu 2 + 1 phan 2 mu 3 + 1 phan 2 mu 4 + .......+ 1phan 2 mu 11 < 1
Ta thấy:
1/22<1/1*2; 1/3^2<1/2*3;...;1/2^11<1/10*11
=> tổng đó nhỏ hơn 1/1*2+1/2*3+...+1/10*11
= 1-1/2+1/2-1/3+...+1/10-1/11
=1-1/11<1
=> tổng đó nhỏ hơn 1
chung minh rang 1\2 mu 2+1\3 mu 2+1\4 mu2+...+1\100 mu 2 < 1
ai lam day du dau tien minh se k cho nha
minh can gap lam
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}< 1\)
\(\Rightarrow A< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\).
a] 4 mu 2016: 4 mu 2015 + 10.10 mu 2 =
b] 3 mu 4 . 47 . 63 - 3 mu 4 . 10 =
c] 2016 : { 2464 : [171 - 5 ( 9 mu 2 - 7 mu 2)]} =
d] 1 + 3+ 5 +....... + 2011 + 2013=
a) 4^2016 : 4^2015 + 10.10^2
= 4 + 10 . 100
= 4+ 1000
= 1004
b) 3^4 . 47 . 63 - 3^4 . 10
= 81 . 47 .63 -81 .10
= 3807 . 63 - 80
= 239841 - 80
= 239761
c)2016 : { 2464 : [ 171 - 5 ( 9^2 - 7^2 )]}
= 2016 : { 2464 : [ 171 - 5. 32 ]}
= 2016 : { 2464 : [ 171 - 160 ]}
= 2016 : { 2464 : 11 }
= 2016 : 224
= 9
d) 1 + 3 + 5 + ..............+ 2011 + 2013
Số phần tử là :
( 2013 - 1 ) : 2 + 1 = 1007 ( pt )
Tổng là :
1007 : 2 .(2013 + 1 ) = ?
a/ 4^2016 : 4^2015 + 10.10^2 = 4^1 + 10^3 = 4 + 1000 = 1004
b/ 3^4 . 47 . 63 - 3^4 . 10 = 3^4 . ( 47.63 - 10 ) = 3^4 . 2951 = 239031
c/ 2016 : (2464 : (171 - 5 x ( 9^2 - 7^2 )))
= 2016 : ( 2464 : ( 171 - 5 x 32 ))
= 2016 : ( 2464 : ( 171 - 160 ))
= 2016 : ( 2464 : 11 )
= 2016 : 224
= 9
d/ 1 + 3 + 5 + ..... + 2011 + 2013
Dãy trên có: ( 2013 - 1 ) : 2 + 1 = 1007 ( số hạng )
Tổng dãy trên là: ( 1 + 2013 ) x 1007 : 2 = 1014049
Đáp số: 1014049
Nhớ k cho mình nhé! Thank you!!!
cho H=2 mu 2016 - 2 mu 2015 -2 mu 2014 ... -2 -1 .Tinh2016H
=> H = 22016 - ( 22015 + 22014 + .... + 2 + 1 )
=> H = 22016 - [ ( 22016 + 22015 + ..... + 22 + 2 ) - ( 22015 + 22014 + .... + 2 + 1 )
=> H = 22016 - ( 22016 - 1 ) = 22016 - 22016 + 1 = 0 + 1 = 1
=> H = 1 => 2016H = 2016.1 = 2016
H=1
=>2016H=2016.1=2016
Vậy 2016H=2016
chung to rang B = 1/2mu 2 cong 1/3 mu 2 cong 1/4 mu 2 cong 1/5 mu 2 cong 1/6 mu 2cong 1/7 mu 2 cong 1/8 mu2 nho hon 1
B=1/3+1/3 mu 3 +1/3 mu 5 +1/3 mu 7 + ...+1/3 mu 99
M= 3/1 mu 2 . 2 mu 2 +5/2 mu 2 . 3 mu 2+7/3 mu 2 . 4 mu 2 + ...+19= 9 mu 2 . 10 mu 2
7 × 3 mu x + 20 × 3 mu x = 3 mu 25
tinh P = GTTĐ cua 2x-1 mu 2015 +(3y-2) mu 2016
Chứng minh rằng 1\2 mu 2+1\4 mu 2+1\6 mu 2+.....+1\4010 mu 2<1\2
giup minh lam nhanh nhanh len minh can gap ai la dung minh se k cho
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{4010^2}\)
= \(\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2005^2}\right)\)
< \(\frac{1}{2^2}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2004.2005}\right)\)
\(=\frac{1}{2^2}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2004}-\frac{1}{2005}\right)\)
= \(\frac{1}{2^2}.\left(2-\frac{1}{2005}\right)=\frac{1}{2}-\frac{1}{4\left(2005\right)}< \frac{1}{2}\)
Vậy \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{4010^2}< \frac{1}{2}\)
1, A=1/1 mu 2 + 1/2 mu 2+ 1/3 mũ 2 +1/4 mu 2+...........+1/50 mũ 2 . Chứng minh A<2
2, Tính tổng : S= 3+3/2+3/2 mu 2+...............+ 3/2 mũ 9