\(1\frac{1}{2}×1\frac{1}{3}×1\frac{1}{4}...1\frac{1}{1009}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}......\frac{99^2}{99.100}\)
\(\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).\left(1+\frac{1}{4}\right)......\left(1+\frac{1}{100}\right)\)
\(\left(\frac{1}{7}+\frac{1}{23}+\frac{1}{1009}\right):\left(\frac{1}{23}+\frac{1}{7}-\frac{1}{1009}+\frac{1}{7}.\frac{1}{23}.\frac{1}{1009}\right)+1:\left(30.1009-160\right)\)
đề bài tính nhanh
Ta có :
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{99^2}{99.100}\)
\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1.2.2.3.3.4.....99.100}\)
\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1^2.2^2.3^2.4^2.....99^2}.\frac{1}{100}\)
\(=\)\(\frac{1}{100}\)
A = (\(\frac{1}{1009}+\frac{1}{1010}+.....+\frac{1}{2015}+\frac{1}{2016}\)) :(\(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\))
khó was chịu mk cũng lớp 7 mà chẳng thấy bài nào như vạy cả
Tính : \(A=\frac{\left(1+\frac{2017}{1}\right)\left(1+\frac{2017}{2}\right)...\left(1+\frac{2017}{1009}\right)}{\left(1+\frac{1009}{1}\right)\left(1+\frac{1009}{2}\right)...\left(1+\frac{1009}{2017}\right)}\)
Ta có: \(A=\frac{\left(1+\frac{2017}{1}\right)\left(1+\frac{2017}{2}\right)...\left(1+\frac{2017}{1009}\right)}{\left(1+\frac{1009}{1}\right)\left(1+\frac{1009}{2}\right)...\left(1+\frac{1009}{2017}\right)}=\frac{\frac{2017+1}{1}\frac{2017+2}{2}...\frac{2017+1009}{1009}}{\frac{1009+1}{1}\frac{1009+2}{2}...\frac{1009+2017}{2017}}\)
\(\Leftrightarrow A=\frac{\frac{2018.2019...3026}{1.2...1009}}{\frac{1010.1011...3026}{1.2...2017}}=\frac{2018.2019...3026}{1.2...1009}.\frac{1.2...2017}{1010.1011...3026}\)
\(\Leftrightarrow A=\frac{1.2...2017.2018.2019...3026}{1.2...1009.1010.1011...3026}=\frac{1.2.3...3026}{1.2.3...3026}=1.\)
Tính B = \(\left(\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2015}+\frac{1}{2016}\right):\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....-\frac{1}{2016}\right)\)
giá trị của biểu thức \(\frac{\left(1+\frac{2017}{1}\right)\left(1+\frac{2017}{2}\right)...\left(1+\frac{2017}{1009}\right)}{\left(1+\frac{1009}{1}\right)\left(1+\frac{1009}{2}\right)...\left(1+\frac{1009}{2007}\right)}\) là.....
\(\frac{\left(1+\frac{2017}{1}\right)\left(1+\frac{2017}{2}\right)....\left(1+\frac{2017}{1009}\right)}{\left(1+\frac{1009}{1}\right)\left(1+\frac{1009}{2}\right)....\left(1+\frac{1009}{2017}\right)}=\frac{1.1.1.....1}{1.1.1....1}=1\)
- Đề sai rồi : )
- Xem lại đề nha bạn #Thành
CMR :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2013}-\frac{1}{2014}=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}\)
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}-1-\frac{1}{2}-...-\frac{1}{1007}\)
\(=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}\) (đpcm)
\(A=\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}+\frac{1}{2017}\right): \)\(\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\right)\)
\(\text{đặt}k=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)
\(K=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
\(K=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1008}\right)\)
\(K=\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+....+\frac{1}{2017}\Rightarrow A=1\)
Thực hiện phép tính
\(\frac{\frac{1}{23}+\frac{1}{7}-\frac{1}{1009}}{\frac{1}{23}+\frac{1}{7}-\frac{1}{1009}+\frac{1}{23}.\frac{1}{7}.\frac{1}{1009}}+\frac{1}{\left(23+7\right).1009-160}\)
1. Chứng Minh Rằng \(\frac{1}{3^1}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+.....+\frac{100}{3^{100}}<\frac{3}{4}\)
2. Chứng Minh Rằng \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2015.2016}=\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2012}\)
2.
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2015.2016}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2016}\)