Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tiểu kiếm
Xem chi tiết
Phùng Minh Quân
27 tháng 2 2018 lúc 18:32

Ta có : 

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{99^2}{99.100}\)

\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1.2.2.3.3.4.....99.100}\)

\(=\)\(\frac{1^2.2^2.3^2.....99^2}{1^2.2^2.3^2.4^2.....99^2}.\frac{1}{100}\)

\(=\)\(\frac{1}{100}\)

o0oTÍTo0o
Xem chi tiết
Ạnh Bùi Đức
21 tháng 12 2016 lúc 15:13

khó was chịu mk cũng lớp 7 mà chẳng thấy bài nào như vạy cả

Melkior
3 tháng 8 2018 lúc 18:55

bài này dễ mà? tớ lười quá chẳng muốn làm đâu

quách thành hưng
3 tháng 8 2018 lúc 19:03

Đây mà là bài lớp 7 á lớp 5 thôi

Vũ Văn Huy
Xem chi tiết
Duc Loi
25 tháng 6 2019 lúc 21:55

Ta có: \(A=\frac{\left(1+\frac{2017}{1}\right)\left(1+\frac{2017}{2}\right)...\left(1+\frac{2017}{1009}\right)}{\left(1+\frac{1009}{1}\right)\left(1+\frac{1009}{2}\right)...\left(1+\frac{1009}{2017}\right)}=\frac{\frac{2017+1}{1}\frac{2017+2}{2}...\frac{2017+1009}{1009}}{\frac{1009+1}{1}\frac{1009+2}{2}...\frac{1009+2017}{2017}}\)

\(\Leftrightarrow A=\frac{\frac{2018.2019...3026}{1.2...1009}}{\frac{1010.1011...3026}{1.2...2017}}=\frac{2018.2019...3026}{1.2...1009}.\frac{1.2...2017}{1010.1011...3026}\)

\(\Leftrightarrow A=\frac{1.2...2017.2018.2019...3026}{1.2...1009.1010.1011...3026}=\frac{1.2.3...3026}{1.2.3...3026}=1.\)

Diệp Chi
Xem chi tiết
nguyễn đức anh
3 tháng 5 2019 lúc 21:33

lay

đỗ văn thành
Xem chi tiết
Hà Hoàng Thịnh
25 tháng 10 2016 lúc 15:12

1

tick mình nha thank

đỗ văn thành
23 tháng 10 2016 lúc 10:19

\(\frac{\left(1+\frac{2017}{1}\right)\left(1+\frac{2017}{2}\right)....\left(1+\frac{2017}{1009}\right)}{\left(1+\frac{1009}{1}\right)\left(1+\frac{1009}{2}\right)....\left(1+\frac{1009}{2017}\right)}=\frac{1.1.1.....1}{1.1.1....1}=1\)

Dương Tử
3 tháng 12 2016 lúc 23:32

- Đề sai rồi : )
- Xem lại đề nha bạn #Thành

Đỗ Đức Anh
Xem chi tiết
Nguyễn Phương Uyên
13 tháng 3 2018 lúc 19:52

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}-1-\frac{1}{2}-...-\frac{1}{1007}\)

\(=\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2014}\)   (đpcm)

anna vũ lê
Xem chi tiết
Nguyệt
18 tháng 12 2018 lúc 11:58

\(\text{đặt}k=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)

\(K=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(K=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1008}\right)\)

\(K=\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+....+\frac{1}{2017}\Rightarrow A=1\)

pham gia huy
Xem chi tiết
Nguyễn Phương Anh
Xem chi tiết
Mai Ngọc
28 tháng 1 2016 lúc 18:55

2. 

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2015.2016}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1008}\right)\)

\(=\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2016}\)

Lê Nho Khoa
28 tháng 1 2016 lúc 18:46

ai kết bạn không

HOANGTRUNGKIEN
28 tháng 1 2016 lúc 18:47

kho