Bài 1: Tỉ lệ thức \(\frac{m}{n}=\frac{p}{q}\)với m,n,p,q khác 0; ta có thể suy ra các tỉ lệ thức còn lại
Bài 1: Từ tỉ lệ thức \(\frac{m}{n}=\frac{p}{q}\) với m,n,p,q khác 0; ta có thể suy ra các tỉ lệ thức còn lại?
\(\frac{m}{n}=\frac{p}{q}\Rightarrow\frac{m}{p}=\frac{n}{q}\Rightarrow\frac{n}{m}=\frac{q}{p}\)\(\Rightarrow\frac{m}{n}=\frac{p}{q}=\frac{m+p}{n+q}\)
Bài 1:
Cho tỉ lệ thức \(\frac{x}{4}=\frac{y}{7}\)và xy=112. Tìm x và y.
Bài 2:
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)(với b + d khác 0) ta suy ra được \(\frac{a}{b}=\frac{a+c}{b+d}\)
Bài 3:
Cho a,b,c,d khác 0. Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)hãy suy ra tỉ lệ thức \(\frac{a-b}{a}=\frac{c-d}{c}\)
Giúp mk vs mk sẽ tick cho nha!
Bài 1: Ta có: \(\frac{x}{4}=\frac{y}{7}\Rightarrow7x=4y\) (1)
=> 7xy=4yy
=> 7.112=4.y2
=> y2=784:4
=> y2=196.
Mà vì 196= 14.14 => y=14 (2)
TỪ (1) và (2) => 14.4=x.7
=> x=56:7=8
Vậy x=8;y=14
Cho tỉ lệ thức \(\frac{m}{n}\)=\(\frac{p}{q}\)(m,n,p,q ≠ 0, m ≠ -3n, p ≠ -3q). Chứng minh rằng \(\frac{n}{3n+m}\)=\(\frac{q}{3q+p}\).
đặt: m/n=p/q=k
suy ra: m=kn; p=kq
Suy ra: \(\hept{\begin{cases}VT=\frac{n}{3n+kn}=\frac{1}{3+k}\\VP=\frac{q}{3q+kq}=\frac{1}{3+k}\end{cases}\Rightarrow VT=VP\left(ĐPCM\right)}\)
từ tỉ lệ thức \(\frac{m}{n}=\frac{3}{4}\)
hãy viết ra 9 tỉ lệ thức khác?
1)Từ tỉ lệ thức m phần n=p phân q với m,p,q khác 0;ta có thể suy ra các tỉ lệ thức còn lại?
2) Từ đẳng thức 75.2=50.3.Hãy viết tất cả các tỉ lệ thức tìm được?
Giúp mình nhé
những bài này bạn mở sgk ra ( t/c tỷ lệ thức) rùi thay chữ = số là xong, hỏi làm chi các bn coi thường mk,nghe mk bn nhé
Cho các số hữu tỉ: \(x=\frac{a}{b};y=\frac{c}{d};z=\frac{m}{n}\). Biết ad-bc = 1; cn-dm = 1; b,d,n > 0
So sánh y với t biết \(t=\frac{a+m}{b+m}\)với b+n khác 0
Giúp mình với
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
1)Cho tỉ lệ thức :\(\frac{a}{b}=\frac{c}{d}.Chứngminh\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}\)
2) Cho a:b:c:=b:c:a và a+b+c khác 0. C/m
(2a+9b+1945c)^2009 = 1956^2009 . a^30.b^4.c^1975
3)Cho 3 số a,b,c tỉ lệ vs các số m;m+n;m+2n. C/m nếu n khác 0 thì ta có:
4(a-b)(b-c)=(c-a)^2
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a^{1994}}{b^{1994}}=\frac{c^{1994}}{d^{1994}}=\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{\left(a+c\right)^{1994}}{\left(b+d\right)^{1994}}=\frac{a^{1994}+c^{1994}}{b^{1994}+d^{1994}}\)
=> Đpcm
Câu 2 tớ đăng phía dưới rồi đó.
Câu 3 đang định đăng lên thì cậu đăng là sao hả?
Bài 1: Cho tỉ lệ thức \(\frac{\overline{ab}}{\overline{bc}}=\frac{a}{c}\), C/m\(\frac{\overline{abbb...b}}{\overline{bbb...bc}}=\frac{a}{c}\)(n chữ số b)
ta có : ab/bc=a.b/b.c=a/c <=> abbbb..b/bbb.bc=a.b.b.....b/b.b.b....b.c=a/c
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)với a,b,c,d khác 0,a khác b , c khác d . CMR \(\frac{a}{a-b}=\frac{c}{c-d}\)
Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\)trong đó b khác 0 . CMR c = 0
MAI MÌNH NỘP RỒI GIÚP MÌNH VỚI