x^3 + (x+4)(x-2)+64=0
Tìmx,y biết x^2-25=0 b, (x+1)^2=4 c, (x-3)^3-64=0 d, 2^x+1-128=0 e, x^2 +(y-2)^2=0
a: =>(x-5)(x+5)=0
=>x=5 hoặc x=-5
b: \(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\Leftrightarrow x\in\left\{1;-3\right\}\)
c: =>x-3=4
hay x=7
d: =>x+1=7
hay x=6
e: =>x=0 và y-2=0
hay x=0 và y=2
9x^2-4-(3x-2)(x+5)=0
x^3+64+(x+4)(2x-3)=0
(x-3)(x^2+4x+9)+2(x^2-9)-10(x-3)=0
9x2 - 4 - ( 3x - 2 )( x + 5 ) = 0
<=> ( 3x - 2 )( 3x + 2 ) - ( 3x - 2 )( x + 5 ) = 0
<=> ( 3x - 2 )( 3x + 2 - x - 5 ) = 0
<=> ( 3x - 2 )( 2x - 3 ) = 0
<=> \(\orbr{\begin{cases}3x-2=0\\2x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{3}{2}\end{cases}}\)
x3 + 64 + ( x + 4 )( 2x - 3 ) = 0
<=> ( x + 4 )( x2 - 4x + 16 ) + ( x + 4 )( 2x - 3 ) = 0
<=> ( x + 4 )( x2 - 4x + 16 + 2x - 3 ) = 0
<=> ( x + 4 )( x2 - 2x + 13 ) = 0
<=> \(\orbr{\begin{cases}x+4=0\\x^2-2x+13=0\end{cases}}\Leftrightarrow x=-4\)( vì x2 - 2x + 13 = ( x2 - 2x + 1 ) + 12 = ( x - 1 )2 + 12 ≥ 12 > 0 ∀ x )
( x - 3 )( x2 + 4x + 9 ) + 2( x2 - 9 ) - 10( x - 3 ) = 0
<=> ( x - 3 )( x2 + 4x + 9 ) + 2( x - 3 )( x + 3 ) - 10( x - 3 ) = 0
<=> ( x - 3 )( x2 + 4x + 9 + 2x + 6 - 10 ) = 0
<=> ( x - 3 )( x2 + 6x + 5 ) = 0
<=> ( x - 3 )( x + 1 )( x + 5 ) = 0
<=> x = 3 hoặc x = -1 hoặc x = -5
<=> ( x - 3 )(
Tìm x , biết :
a, x mũ 2 - 2x + 1 = 25
b, 4 x mũ 2 - ( x + 4 ) mũ 2 = 0
c, 9 - 64 x mũ 2 = 0
d, 9 ( 4 x + 3 ) mũ 2 = 16 ( 3 x - 5 ) mũ 2
a. x mũ 2 - 2x + 1 = 25
= x^2 + 2.x.1 + 1^2
= ( x + 1 ) ^2
ko bt có đúng ko nữa, mấy câu kia tui ko bt lm
tìm x biết
a. x^3-64=0
b. (2x-3)^2-(x+5)^2=0
c.(x^3-x^2)-4x^2+8x-4=0
a/ => x3 = 64 => x3 = 43 => x = 4
b/ => 4x2 - 12x + 9 - x2 - 10x - 25 = 0
=> 3x2 - 22x - 16 = 0
=> (x - 8)(3x + 2) = 0
=> x - 8 = 0 => x = 8
hoặc 3x + 2 = 0 => 3x = -2 => x = -2/3
Vậy x = 8 ; x = -2/3
c/ => x3 - x2 - 4x2 + 8x - 4 = 0
=> x3 - 5x2 + 8x - 4 = 0
=> (x - 2)2 (x - 1) = 0
=> (x - 2)2 = 0 => x - 2 = 0 => x = 2
hoặc x - 1 = 0 => x = 1
Vậy x = 2 ; x = 1
Giải các phương trình sau:
1) \(2^x=64\)
2) \(2^x . 3^x . 5^x = 7\)
3) \(4^x + 2 . 2^x - 3 = 0\)
4) \(9^x - 4.3^x + 3 =0\)
5) \(3^{2(x+1)} + 3^{x+1} = 6\)
6) \((2 - \sqrt3)^x + (2 + \sqrt3)^x = 2\)
7) \(\log_{4} (x^2+3x) = 1\)
8) \(\log_{2} (x-2) + \log_{2} (x) = 3\)
9) \(\log^2_{3} (x-3) + \log_{3} (x-3) -6=0\)
1: \(2^x=64\)
=>\(x=log_264=6\)
2: \(2^x\cdot3^x\cdot5^x=7\)
=>\(\left(2\cdot3\cdot5\right)^x=7\)
=>\(30^x=7\)
=>\(x=log_{30}7\)
3: \(4^x+2\cdot2^x-3=0\)
=>\(\left(2^x\right)^2+2\cdot2^x-3=0\)
=>\(\left(2^x\right)^2+3\cdot2^x-2^x-3=0\)
=>\(\left(2^x+3\right)\left(2^x-1\right)=0\)
=>\(2^x-1=0\)
=>\(2^x=1\)
=>x=0
4: \(9^x-4\cdot3^x+3=0\)
=>\(\left(3^x\right)^2-4\cdot3^x+3=0\)
Đặt \(a=3^x\left(a>0\right)\)
Phương trình sẽ trở thành:
\(a^2-4a+3=0\)
=>(a-1)(a-3)=0
=>\(\left[{}\begin{matrix}a-1=0\\a-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=1\left(nhận\right)\\a=3\left(nhận\right)\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}3^x=1\\3^x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
5: \(3^{2\left(x+1\right)}+3^{x+1}=6\)
=>\(\left[3^{x+1}\right]^2+3^{x+1}-6=0\)
=>\(\left(3^{x+1}\right)^2+3\cdot3^{x+1}-2\cdot3^{x+1}-6=0\)
=>\(3^{x+1}\left(3^{x+1}+3\right)-2\left(3^{x+1}+3\right)=0\)
=>\(\left(3^{x+1}+3\right)\left(3^{x+1}-2\right)=0\)
=>\(3^{x+1}-2=0\)
=>\(3^{x+1}=2\)
=>\(x+1=log_32\)
=>\(x=-1+log_32\)
6: \(\left(2-\sqrt{3}\right)^x+\left(2+\sqrt{3}\right)^x=2\)
=>\(\left(\dfrac{1}{2+\sqrt{3}}\right)^x+\left(2+\sqrt{3}\right)^x=2\)
=>\(\dfrac{1}{\left(2+\sqrt{3}\right)^x}+\left(2+\sqrt{3}\right)^x=2\)
Đặt \(b=\left(2+\sqrt{3}\right)^x\left(b>0\right)\)
Phương trình sẽ trở thành:
\(\dfrac{1}{b}+b=2\)
=>\(b^2+1=2b\)
=>\(b^2-2b+1=0\)
=>(b-1)2=0
=>b-1=0
=>b=1
=>\(\left(2+\sqrt{3}\right)^x=1\)
=>x=0
7: ĐKXĐ: \(x^2+3x>0\)
=>x(x+3)>0
=>\(\left[{}\begin{matrix}x>0\\x< -3\end{matrix}\right.\)
\(log_4\left(x^2+3x\right)=1\)
=>\(x^2+3x=4^1=4\)
=>\(x^2+3x-4=0\)
=>(x+4)(x-1)=0
=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
x=4x=4 là nghiệm của những phương trình nào dưới đây?
\frac{x^2-6x+8}{x^2-9x+20}=0x2−9x+20x2−6x+8=0 \frac{4x-16+\left(8-2x\right)}{x^2+16}=0x2+164x−16+(8−2x)=0 \frac{x^2-16}{x^3+16}=0x3+16x2−16=0 \frac{x^3-64}{x^2-16}=0x2−16x3−64=0c) ( x + 4 )2 - 64 = 0
d) ( x + 13 )3 + 27 = 0
g) ( 3x + 2 )2 ( x - 11 ) < 0
Tìm x à nếu thế thì mk làm cùi lắm
c)(x+4)\(^2\)-64=0
=>(x+4)\(^2\)=64
=>(x+4)\(^2\)=8\(^2\)
=>x+4=8
=>x=4
d)(x+13)\(^3\)+27=0
(x+13)\(^3\)=-27
(x+13)\(^3\)=(-3)\(^3\)
=>x+13=-3=>x=-16a,|x|-7/6=9/15
b,|x-4/3|=1/6
c,|x-4/3|-1/3=1/2
d,8/3-|7/9-x|=-1/5
e,|x-1/4^2|-25/64=0
f,(x-1/4)^2+17/64=21/32
a) \(\left|x\right|-\frac{7}{6}=\frac{9}{15}\)
=> \(\left|x\right|=\frac{9}{15}+\frac{7}{6}=\frac{53}{30}\)
=> \(\orbr{\begin{cases}x=\frac{53}{30}\\x=-\frac{53}{30}\end{cases}}\)
b) \(\left|x-\frac{4}{3}\right|=\frac{1}{6}\)
=> \(\orbr{\begin{cases}x-\frac{4}{3}=\frac{1}{6}\\x-\frac{4}{3}=-\frac{1}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{7}{6}\end{cases}}\)
c) \(\left|x-\frac{4}{3}\right|-\frac{1}{3}=\frac{1}{2}\)
=> \(\left|x-\frac{4}{3}\right|=\frac{1}{2}+\frac{1}{3}\)
=> \(\left|x-\frac{4}{3}\right|=\frac{5}{6}\)
=> \(\orbr{\begin{cases}x-\frac{4}{3}=\frac{5}{6}\\x-\frac{4}{3}=-\frac{5}{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{13}{6}\\x=\frac{1}{2}\end{cases}}\)
d) \(\frac{8}{3}-\left|\frac{7}{9}-x\right|=-\frac{1}{5}\)
=> \(\left|\frac{7}{9}-x\right|=\frac{43}{15}\)
=> \(\orbr{\begin{cases}\frac{7}{9}-x=\frac{43}{15}\\\frac{7}{9}-x=-\frac{43}{15}\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{94}{45}\\x=\frac{164}{45}\end{cases}}\)
e) \(\left|x-\left(\frac{1}{4}\right)^2\right|-\frac{25}{64}=0\)
=> \(\left|x-\frac{1}{16}\right|=\frac{25}{64}\)
=> \(\orbr{\begin{cases}x-\frac{1}{16}=\frac{25}{64}\\x-\frac{1}{16}=-\frac{25}{64}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{29}{64}\\x=-\frac{21}{64}\end{cases}}\)
f) \(\left(x-\frac{1}{4}\right)^2+\frac{17}{64}=\frac{21}{32}\)
=> \(\left(x-\frac{1}{4}\right)^2=\frac{25}{64}\)
=> \(\left(x-\frac{1}{4}\right)^2=\left(\frac{5}{8}\right)^2\)
=> \(\orbr{\begin{cases}x-\frac{1}{4}=\frac{5}{8}\\x-\frac{1}{4}=-\frac{5}{8}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{3}{8}\end{cases}}\)
64^4 - x^3 - 7x^2 + x +1=0
Tìm x