Cho x = 1 + 3√3 + 3√9. Tính P = (x3−3x2−6x−3)1945 + 2020
Giúp mik vs mn
Cho \(x=1+\sqrt[3]{3}\)\(+\sqrt[3]{9}\)
Tính P=(x^3-3x^2+6x-3)^1945 +2020
Cho x = \(1+\sqrt[3]{3}+\sqrt[3]{9}\)
Tính P = \(\left(x^3-3x^2-6x-3\right)^{1945}+2020\)
\(x-1=\sqrt[3]{9}+\sqrt[3]{3}\)
=> \(\left(x-1\right)^3=9+3+3.3.\left(x-1\right)\)
<=> \(x^3-3x^2+3x+1=3+9x\)
<=> \(x^3-3x^2-6x-3=-1\)
=> \(P=-1+2020=2019\)
Tìm X biết:
a/ 5x (x - 2000) – x + 2000 = 0
b/ x3 – 13x = 0
c/ 3x2 - 6x =0
d/ x(x- 5) +3(x-5)=0
e/9x2 – 4 =0
giúp mình vs thx mn
\(a,\Rightarrow\left(x-2000\right)\left(5x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\\ b,\Rightarrow x\left(x^2-13\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{13}\\x=-\sqrt{13}\end{matrix}\right.\\ c,\Rightarrow3x\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ d,\Rightarrow\left(x-5\right)\left(x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\\ e,\Rightarrow\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
1/
A = 3√1+√849+3√1−√8491+8493+1−8493 là một số nguyên
2/
a) Cho x = √4+√10+2√5+√4−√10+2√54+10+25+4−10+25. Tính giá trị biểu thức:
P = x4−4x3+x2+6x+12x2−2x+12x4−4x3+x2+6x+12x2−2x+12
b) Cho x = 1+3√21+23 . Tính giá trị của biểu thức B = x4−2x4+x3−3x2+1942x4−2x4+x3−3x2+1942
3/
Rút gọn:
A = √x√x−5−10√xx−25−5√x+5xx−5−10xx−25−5x+5
B = √x√x+3+2√x√x−3−3x+9x−9xx+3+2xx−3−3x+9x−9
Làm ơn, giúp mik với. Mik đang cần gấp!
a) x2 - 4x + 4
b) x2 - 2
c) 1 - 8x3
d) x3 + 3x2 + 3x + 1
e) (x + y)2 - 9x
f)x2+6x+9
g)10x-25-x2
h)8x3-\(\dfrac{1}{8}\)
giúp em vs mn thx mn ạ
\(a,=\left(x-2\right)^2\\ b,=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\\ c,=\left(1-2x\right)\left(1+2x+4x^2\right)\\ d,=\left(x+1\right)^3\\ e,Sửa:\left(x+y\right)^2-9x^2=\left(x+y-3x\right)\left(x+y+3x\right)\\ =\left(y-2x\right)\left(4x+y\right)\\ f,=\left(x+3\right)^2\\ g,=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\\ h,=8\left(x^3-\dfrac{1}{64}\right)=8\left(x-\dfrac{1}{4}\right)\left(x^2+\dfrac{1}{4}x+\dfrac{1}{16}\right)\)
a) \(\left(x-2\right)^2\)
b) \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)
c) \(\left(1-2x\right)\left(1+2x+4x^2\right)\)
d) \(\left(x+1\right)^3\)
e) \(\left(x+y-3\sqrt{x}\right)\left(x+y+3\sqrt{x}\right)\)
f) \(\left(x+3\right)^2\)
g) \(-\left(x-5\right)^2\)
h) \(\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
Cho D.ABC có M, N lần lượt là trung điểm của AB, AC biết BC = 6cm. Độ dài MN là
A.3cm
B.1cm
C.4cm
D.2cm
Hằng đẳng thức (x - 1)3 được viết đúng là
A.(x - 1)3 = x3 - 3x2 + 3x + 1
B.(x - 1)3 = x3 - 3x + 3x2 - 1
C.(x - 1)3 = x3 - 2x2 + 2x - 1
D.(x - 1)3 = x3 - 3x2 + 3x - 1
(x-3)^3+(6x+3)^3-18x^2
Nhờ mn giúp mik vs ạ
Cứu với ạ
Làm tính chia
1) (x3 – 3x2 + x – 3) : (x – 3) 2) (2x4 – 5x2 + x3 – 3 – 3x) : (x2 – 3)
3) (x – y – z)5 : (x – y – z)3 4) (x2 + 2x + x2 – 4) : (x + 2)
5) (2x3 + 5x2 – 2x + 3) : (2x2 – x + 1) | 6) (2x3 – 5x2 + 6x – 15):(2x – 5) |
tìm x biết
a) (x-2)3-x(x+1)(x-1)+6x(x-3)=10
b) (x+1)3-(x-1)3-6(x-1)2= -10
c) x3+3x2+3x+28=0
d) x3-6x2+12x-7=0
\(a,PT\Leftrightarrow x^3-6x^2+12x-8-x^3+x+6x^2-18x-10=0\)
\(\Leftrightarrow-5x-18=0\)
\(\Leftrightarrow x=-\dfrac{18}{5}\)
Vậy ...
\(b,PT\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+10=0\)
\(\Leftrightarrow12x+6=0\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy ...
\(c,PT\Leftrightarrow\left(x+1\right)^3+3^3=0\)
\(\Leftrightarrow\left(x+1+3\right)\left(x^2+2x+1-3x-3+9\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x^2-x+7\right)=0\)
Thấy : \(x^2-\dfrac{2.x.1}{2}+\dfrac{1}{4}+\dfrac{27}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\)
\(\Rightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy ...
\(d,PT\Leftrightarrow\left(x-2\right)^3+1^3=0\)
\(\Leftrightarrow\left(x-2+1\right)\left(x^2-4x+4-x+2+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-5x+7\right)=0\)
Thấy : \(x^2-5x+7=x^2-\dfrac{5.x.2}{2}+\dfrac{25}{4}+\dfrac{3}{4}=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
\(\Rightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy ...