Bài 1
\(\frac{\sqrt{5-2}}{5-2\sqrt{5}}-\frac{5+2\sqrt{5}}{2+\sqrt{5}}+\frac{1}{\sqrt{5}}\)
tính:
a)\(\frac{1}{1+\sqrt{5}}+\frac{1}{1-\sqrt{5}}\)
b)\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}\)
c)\(\frac{2}{\sqrt{5}+1}+\sqrt{\frac{2}{3-\sqrt{5}}}-5\sqrt{\frac{1}{5}}\)
d)\(\left(\frac{5}{\sqrt{15}-\sqrt{10}}-\frac{3\sqrt{5}-5\sqrt{3}}{\sqrt{3}-\sqrt{5}}\right)^2\)
e)\(\frac{2}{\sqrt{3}-\sqrt{5}}+\frac{3-2\sqrt{3}}{\sqrt{3}-2}\)
Bài 1 :
a) A - \(\frac{\sqrt{3}-3}{\sqrt{2-\sqrt{3}}+2\sqrt{2}}\)+ \(\frac{\sqrt{3}+3}{\sqrt{2+\sqrt{3}}-2\sqrt{2}}\)
b) B = \(\frac{5+\sqrt{5}}{5-\sqrt{5}}\)+ \(\frac{5-\sqrt{5}}{5+\sqrt{5}}\)
c) C= 5 x \(\sqrt{\frac{1}{5}}\)+ \(\frac{1}{2}\)x \(\sqrt{20}+\sqrt{5}\)
lm giúp mk vs
Bài 1: Thực hiện phép tính
1) A= \(\frac{4}{3+\sqrt{5}}-\frac{8}{1+\sqrt{5}}+\frac{15}{\sqrt{5}}\)
2) A= \(\sqrt{\frac{3\sqrt{3}-4}{2\sqrt{3}+1}}+\sqrt{\frac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
3) \(\sqrt{14-8\sqrt{3}}-\sqrt{24-12\sqrt{3}}\)
4) B= 5(\(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}-\sqrt{\frac{5}{2}}\))2 + ( \(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}-\sqrt{\frac{3}{2}}\))2
5) \(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
Tính
A/\(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}\)
B/ \(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
C/ \(\frac{5}{4-\sqrt{11}}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}\)
D/ \(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
Tính
a/\(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}\)
b/\(\left(\frac{5}{4-\sqrt{11}}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}\right)\)
c/\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
d/\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
Tính
a/\(\left(\frac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\frac{\sqrt{216}}{3}\right).\frac{1}{\sqrt{6}}\)
b/\(\left(\frac{5}{4-\sqrt{11}}+\frac{1}{3+\sqrt{7}}-\frac{6}{\sqrt{7}-2}-\frac{\sqrt{7}-5}{2}\right)\)
c/\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}\)
d/\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(-\sqrt{7}-\sqrt{5}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\frac{\sqrt{5}-\sqrt{7}}{\sqrt{7}+\sqrt{5}}=\frac{\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}+\sqrt{7}\right)}{\left(\sqrt{7}+\sqrt{5}\right)^2}=\frac{2}{12+2\sqrt{35}}\)
\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+3\right)}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{8-2\sqrt{15}}{2}+\frac{8+2\sqrt{15}}{2}-\frac{\left(\sqrt{5}+1\right)^2}{4}=8-\frac{6+2\sqrt{5}}{4}=\frac{26-2\sqrt{5}}{4}\)
Bài 1: Tính
1, \(A=\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right).\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
2, \(B=\left(\frac{3\sqrt{125}}{15}-\frac{10-4\sqrt{6}}{\sqrt{5}-2}\right).\frac{1}{\sqrt{5}}\)
3, \(C=\left(\frac{\sqrt{1000}}{100}-\frac{5\sqrt{2}-2\sqrt{5}}{2\sqrt{5}-8}\right).\frac{\sqrt{10}}{10}\)
4, \(D=\frac{1}{\sqrt{49+20\sqrt{6}}}-\frac{1}{\sqrt{49-20\sqrt{6}}}+\frac{1}{\sqrt{7-4\sqrt{3}}}\)
5, \(E=\frac{1}{\sqrt{4-2\sqrt{3}}}-\frac{1}{\sqrt{7-\sqrt{48}}}+\frac{3}{\sqrt{14-6\sqrt{5}}}\)
6, \(F=\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
7, \(G=\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}-\sqrt{11-2\sqrt{10}}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}+\sqrt{12+8\sqrt{2}}}}\)
\(C=\frac{2}{\sqrt{2}}-\frac{1}{\sqrt{3-\sqrt{2}}}+\frac{2}{\sqrt{3-1}} \)\(D=\frac{\sqrt{5-2}}{5+2\sqrt{5}}-\frac{1}{2+\sqrt{5}}+\frac{1}{\sqrt{5}}\)
a,\(\frac{2\sqrt{2}}{\sqrt{2\sqrt{2}+1}+1}-\frac{2\sqrt{2}}{\sqrt{2\sqrt{2}+1}-1}\)
b,\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{1}{2-\sqrt{3}}\)
c,\(\frac{2}{\sqrt{3}-\sqrt{5}}+\frac{3-2\sqrt{3}}{\sqrt{3}-2}\)
d,\(\frac{-4}{\sqrt{7}-\sqrt{5}}+\frac{1}{\sqrt{3}-1}+\frac{4-2\sqrt{5}}{\sqrt{5}-2}\)
e,\(\frac{6}{\sqrt{5}-1}+\frac{7}{1-\sqrt{3}}-\frac{2}{\sqrt{3}-\sqrt{5}}\)
rút gọn biểu thức:
1/ \(\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\frac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
2/ \(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
3/ \(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
4/ \(\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
giúp minh với cần gấp lắm
1/ \(\frac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\frac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
=\(\frac{\left(\sqrt{15}-\sqrt{5}\right)\cdot\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\cdot\left(\sqrt{3}+1\right)}+\frac{\left(5-2\sqrt{5}\right)\cdot\left(2\sqrt{5}+4\right)}{\left(2\sqrt{5}-4\right)\cdot\left(2\sqrt{5}+4\right)}\)
=\(\frac{2\sqrt{5}}{2}+\frac{2\sqrt{5}}{4}\)
=\(\sqrt{5}+\frac{\sqrt{5}}{2}\)
=\(\frac{3\sqrt{5}}{2}\)
2/\(\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}+\frac{6+2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
=\(\frac{\left(\sqrt{15}-\sqrt{12}\right)\cdot\left(\sqrt{5}+2\right)}{\left(\sqrt{5}-2\right)\cdot\left(\sqrt{5}+2\right)}+\frac{\left(6+2\sqrt{6}\right)\cdot\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+2\right)\cdot\left(\sqrt{3}-2\right)}\)
=\(\frac{\sqrt{3}}{1}+\frac{2\sqrt{3}}{1}\)
=\(3\sqrt{3}\)
3/\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
=\(\frac{\sqrt{3}\cdot\left(3+2\sqrt{3}\right)}{3}+\frac{\left(2+\sqrt{2}\right)\cdot\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\cdot\left(\sqrt{2}-1\right)}-\left(2+\sqrt{3}\right)\)
=\(\frac{6+3\sqrt{3}}{3}+\sqrt{2}-\left(2-\sqrt{3}\right)\)
=\(\frac{3\cdot\left(2+\sqrt{3}\right)}{3}+\sqrt{2}-\left(2+\sqrt{3}\right)\)
=\(2+\sqrt{3}+\sqrt{2}-2-\sqrt{3}\)
=\(\sqrt{2}\)
Câu số 4 bạn có chắc là đúng đề bài không ạ ? Xem lại đề giúp mình nhé, cảm ơn bạn ^^