Cho a,b,c khác 0 và 1/a+1/b+1/c=1/a+b+c
Chứng minh 1/an+1/bn+1/cn=1/(a+b+c)n(n thuộc N*,n lẻ)
Cho 3 số thực a,b,c khác 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) .Chứng minh rằng trong 3 số a,b,c luôn có 2 số đối nhau ..
Từ đó suy ra với mọi n lẻ thì \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{1}{a+b+c}=\frac{bc+ca+ab}{abc}\)
\(\Rightarrow\left(a+b+c\right)\left(bc+ca+ab\right)=abc\)
\(\Rightarrow abc+a^2c+a^2b+b^2c+abc+ab^2+bc^2+ac^2+abc=abc\)
\(\Rightarrow2abc+a^2c+a^2b+b^2c+ab^2+bc^2+ac^2=0\)
\(\Rightarrow\left(abc+a^2b\right)+\left(ac^2+a^2c\right)+\left(b^2c+b^2a\right)+\left(bc^2+abc\right)=0\)
\(\Rightarrow ab\left(a+c\right)+ac\left(a+c\right)+b^2\left(a+c\right)+bc\left(a+c\right)=0\)
\(\Rightarrow\left(ab+ac+b^2+bc\right)\left(a+c\right)=0\)
\(\Rightarrow\left[\left(ab+ac\right)+\left(b^2+bc\right)\right]\left(a+c\right)=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
Do đó trong a , b , c luôn có 2 số đối nhau.
Phần 2 : Do vai trò a , b , c như nhau nên coi \(a=-b\)( Do có 2 số đối nhau)
\(\Rightarrow a^n=-b^n\)(Vì n lẻ )
\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{a^n+b^n}{a^n.b^n}+\frac{1}{c^n}=0+\frac{1}{c^n}=\frac{1}{c^n}\)
\(\frac{1}{a^n+b^n+c^n}=\frac{1}{\left(a^n+b^n\right)+c^n}=\frac{1}{0+c^n}=\frac{1}{c^n}\)
\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)
Vậy ...
CHỨNG MINH RẰNG:
A, VỚI N THUỘC N THÌ N VÀ 2N+ 1 LÀ 2 SỐ GUYÊN TỐ CÙNG NHAU
B, VỚI N LẺ THÌ ( N-1 ) ( N + 1 ) ( N + 3 ) ( N + 5 ) CHIA HẾT CHO 384
C, VỚI A ,B,C,D LÀ CÁC SỐ TỰ NHIÊN KHÁC 0 ,P NGUYÊN TỐ VÀ AB+ CD = P THÌ A,C LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
Câu a)
Giả sử k là ước của 2n+1 và n
Ta có
\(2n+1⋮k\)
\(n⋮k\)
Suy ra
\(2n+1⋮k\)
\(2n⋮k\)
Suy ra \(2n+1\)là số lẻ (với mọi giá trị n thuộc N)
Suy ra \(2n\)là số chẵn (với mọi giá trị n thuộc N)
Mà 2 số trên là 2 số tự nhiên liên tiếp
Suy ra \(2n+1\)và \(2n\)là 2 số nguyên tố cùng nhau
Vậy \(2n+1\)và \(n\)là 2 số nguyên tố cùng nhau (đpcm)
Câu b)
Vì n lẻ nên
(n-1) là số chẵn
(n+1) là số chẵn
(n+2) là số chẵn
(n+5) là số chẵn
Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn
Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)
Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384
Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3
Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384
Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)
Câu c)
Đang thinking .........................................
LÊ NHẬT KHÔI ƠI BẠN LÀM CÓ ĐÚNG KO??? GIÚP MÌNH CÂU C VƠI NHA !!!
Giả sử k là ước của 2n+1 và n
Ta có
2n+1⋮k
n⋮k
Suy ra
2n+1⋮k
2n⋮k
Suy ra 2n+1là số lẻ (với mọi giá trị n thuộc N)
Suy ra 2nlà số chẵn (với mọi giá trị n thuộc N)
Mà 2 số trên là 2 số tự nhiên liên tiếp
Suy ra 2n+1và 2nlà 2 số nguyên tố cùng nhau
Vậy 2n+1và nlà 2 số nguyên tố cùng nhau (đpcm)
Câu b)
Vì n lẻ nên
(n-1) là số chẵn
(n+1) là số chẵn
(n+2) là số chẵn
(n+5) là số chẵn
Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn
Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)
Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384
Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3
Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384
Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)
cho 3 số thực a,b,c khác không thỏa mãn a+b+c khác 0 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\). Chứng minh rằng trong ba số a,b,c luôn có hai số đối nhau. Từ đó suy ra với mọi số nguyên n lẻ thì: \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\) Mk đang cần gấp ai lm trước mk tích
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+ac+bc\right)\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc\right)+a\left(ab+ac+bc\right)-abc=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc\right)+a\left(ab+bc\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc\right)+a^2\left(c+b\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(ab+ac+bc+a^2\right)=0\)
\(\Leftrightarrow\left(b+c\right)\left(a+c\right)\left(a+b\right)=0\)
=> a=-b hoặc b=-c hoặc c = -a
Không mất tình tổng quát, giả sử a=-b -> a^n = -b^n ( n lẻ):
\(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{c^n}=\frac{1}{a^n+b^b+c^n}\)
a) cho a/b < 1 ( a,b thuộc N b khác 0)
CM a/b < a+n/b+n (n thuộc Z)
Vận dụng so sánh:
A= 15^18+1/15^17+1 và B= 15^17+1/15^18+1
b) cho a/b > 1 ( a,b thuộc N b khác 0)
CM a/b >a+n/b+n (n thuộc Z)
Vận dụng so sánh:
C= 100^90+1/100^89+1 và D= 100^89+1/100^88+1
Cho hàm số f(n)= a n + 1 + b n + 2 + c n + 3 ( n ∈ N * ) với a, b, c là hằng số thỏa mãn a+b+c=0. Khẳng định nào sau đây đúng?
A. lim x → + ∞ f ( n ) = - 1
B. lim x → + ∞ f ( n ) = 1
C. lim x → + ∞ f ( n ) = 0
D. lim x → + ∞ f ( n ) = 2
CHỨNG MINH RẰNG:
A, VỚI N THUỘC N THÌ N VÀ 2N + 1 LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
B, VỚI N LẺ THÌ ( N - 1 ) ( N + 1 ) ( N+ 3 ) ( N+ 5 ) CHIA HẾT CHO 384
C, VỚI A,B,C,D LÀ CÁC SỐ TỰ NHIÊN KHÁC 0 , P NGUYÊN TỐ VÀ AB+ CD = P THÌ A,C LÀ 2 SỐ NGUYÊN TỐ CÙNG NHAU
GIÚP MÌNH VỚI
a, gọi ƯCLN(n,2n-1) là d (d thuộc N)
Ta có: n chia hết cho d
=> 2n chia hết cho d
2n-1 chia hết cho d
=> 2n-1-2n chia hết cho d
=> 1 chia hết cho d
=> d thuộc ước của 1
=> d=1
=> n bà 2n+1 nguyên tố cùng nhau
a, gọi ƯCLN(n,2n-1) là d (d thuộc N)
Ta có: n chia hết cho d
=> 2n chia hết cho d
2n-1 chia hết cho d
=> 2n-1-2n chia hết cho d
=> 1 chia hết cho d
=> d thuộc ước của 1
=> d=1
=> n bà 2n+1 nguyên tố cùng nhau
Câu 1:Cho các số hữu tỉ x =a/b; y = c/d ; z = m/n. Biết ad-bc = 1; cn - dm = 1 ; b,d,n > 0
a) Hãy so sánh các số x,y,z
b) So sánh y với t biết t = a+m /b+n với b+n khác 0
Câu 2: Cho 6 số nguyên dương a<b<c<d<m<n
Chứng minh rằng a+c+m / a+b+c+d+m+n < 1/2.
a/ Cho biểu thức A = 5/n-1; (n thuộcZ)
b/ Chứng minh phân số n/n+1 tối giản;(n thuộc N và N khác 0)
c*/ Chứng tỏ rằng: 1/1.2+1/2.3+1/3.4+...+1/49.50 < 1
Câu a: Không hỏi nên không trả lời
Câu b:Gọi d là ƯCLN của n và n+1
Ta có: n chia hết cho d
n+1 chia hết cho d
=>(n+1)-n chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy phân số n/n+1 là phân số tối giản
Câu c: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
=\(1-\frac{1}{50}\)
Vì: \(1-\frac{1}{50}\)<\(1\)
Vậy:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)<\(1\)
chứng minh PS tối gianr (n thuộc N và n khác 0)
a) n/n+1
b) A=2n+1/3n+1
c)12n+1/30n+2
a) \(\frac{77}{74}\)
b)\(\frac{151}{228}\)
c)\(\frac{307}{768}\)
ko chắc là đúng nhưng đúng thì k nhé
a) Gọi ƯCLN(n;n+1) là d
Ta có n chia hết cho d
n+1 chia hết cho d
=> (n+1)-n chia hết cho d
=> 1 chia hết cho d
hay d thuộc Ư 1
=> d thuộc {-1;1}
Vậy n/n+1 là phân số tối giản